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What |s Causation”

The acquired wisdom that certain conditions or events bring about other
conditions or events is an important survival trait. Consider an infant whose first
experiences are a jumble of sensations that include hunger, thirst, color, light,
heat, cold, and many other stimuli. Gradually, the infant begins to perceive pat-
terns in the jumble and to anticipate connections between actions such as crying
and effects such as being fed. Eventually, the infant assembles an inventory of
associated perceptions. Along with this growing appreciation for specific causal
relations comes the general idea that some events or conditions can be considered
causes of other events or conditions.

Thus, our first appreciation of the concept of causation is based on our own
observations. These observations typically involve causes with effects that are
immediately apparent. For example, changing the position of a light switch on the
wall has the instant effect of causing the light to go on or off. There is, however,
more to the causal mechanism for getting the light to shine than turning the light
switch to the on position. If the electric lines to the building are down because
of a storm, turning on. the switch will have no effect. If the bulb is burned out,
manipulating the switch also will have no effect. One cause of the light going
on is having the switch in the proper place, but along with it we must include a
supply of power to the circuit, a working bulb, and intact wiring. When all other
factors are in place, turning the switch will cause the light to go on, but if one
or more of the other factors is not playing its causal role, the light will not go
on when the switch is turned. There is a tendency to consider the switch as the
unique cause of turning on the light, but we can define a more intricate causal
mechanism in which the switch is one component of several. The tendency to
identify the switch as the unique cause stems from its usual role as the final fac-
tor that acts in the causal mechanism. The wiring can be considered part of the
causal mechanism, but after it is installed, it seldom warrants further attention.
The switch is typically the only part of the mechanism that needs to be acti-
vated to turn on the light. The effect usually occurs immediately after turning
the switch, and as a result, we tend to identify the switch as a unique cause. The
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inadequacy of this assumption is emphasized when the bulb fails and must be
replaced before the light will go on.

THE CAUSAL PIE MODEL

Causes of disease can be conceptualized in the same way as the causes of turning
on a light. A helpful way to think about causal mechanisms for disease is depicted
in Figure 3-1.! Each pie in the diagram represents a theoretical causal mechanism
for a given disease, sometimes called a sufficient cause. The three pies illustrate
that there are multiple mechanisms that cause any type of disease. Each indi-
vidual instance of disease occurs through a single mechanism or sufficient cause.
A given causal mechanism requires the joint action of many component factors,
or component causes. Bach component cause is an event or a condition that plays
a necessary role in the occurrence of some cases of a given disease. For example,
the disease may be cancer of the lung, and in the first mechanism in Figure 3-1,
factor C may be cigarette smoking. Other factors include genetic traits or other
environmental exposures that play a causal role in cancer of the lung, Some com-
ponent causes presumably act in many different causal mechanisms. (Terminology
note: the causal pie model has also been described as the sufficient-component cause

model.)

Implications of the Causal Pie Model

MULTICAUSALITY

The model of causation shown in Figure 3-1 illuminates several important prin-
ciples of causation, the most important of which is that every causal mechanism
involves the joint action of a multitude of component causes. Consider as an
example the cause of a broken hip. Suppose that someone experiences a traumatic
injury to the head that leads to a permanent disturbance in equilibrium. Many
years later, faulty equilibrium plays a causal role in a fall that occurs while the
person is walking on an icy path. The fall results in a broken hip. Other factors

e —

One Causal Mechanism
Single Component Cause

7 Figure 3-1 Three sufficient causes of a disease,
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playing a causal role for the broken hip may include the type of shoe the person
was wearing, the lack of a handrail along the path, a sudden gust of wind, and
the weight of the person. The complete causal mechanism involves a multitude
of factors. Some factors, such as the earlier injury that resulted in the equilibrium
disturbance and the weight of the person, reflect carlier events that have had a
lingering effect. Some causal components of the broken hip are genetic. Genetic
factors affect the person’s weight, gait, behavior, and recovery from the earlier
trauma. Other factors, such as the force of the wind, are environmental (nonge-
netic). There usually are some genetic and some environmental component causes
in every causal mechanism. Even an event such as a fall on an icy path that results
in a broken hip is part of a complicated causal mechanism that involves many
component causes.

GENETIC VERSUS ENVIRONMENTAL CAUSES

It is a strong assertion that every case of every disease has both genetic
and environmental causes. Nevertheless, if all genetic factors that determine
disease are taken into account, essentially 100% of disease can be said to
be inherited, in the sense that nearly all cases of disease have some genetic
component causes. What would be the genetic component causes of some-
one who gets drunk and is killed in an automobile after colliding with a
tree? Genetic traits may lead to psychiatric problems such as alcoholism,
which may lead to drunk driving and consequent fatality. It is also possible
to claim that essentially 100% of any disease is environmentally caused, even
diseases that often are considered to be purely genetic. Phenylketonuria, for
example, is considered by many to be purely genetic. Nonetheless, if we
consider the disease that phenylketonuria represents to be the mental retar-
dation that may result from it, we can prevent the disease by appropriate
dietary intervention. The disease therefore has environmental determinants,
and its causes are both environmental and genetic. Although it may seem
like an exaggeration to claim that 100% of cases of any disease are envi-
ronmental and genetic at the same time, it is a good approximation. It may
seemn counterintuitive, because we cannot manipulate many of the causes
in most situations and the ones that can be controlled are usually solely
environmental causes, as in the manipulation of diet to prevent the mental
retardation of phenylketonuria.

STRENGTH OF CAUSES

It is common to think that some component causes play a more important role
than. other factors in the causation of disease. One way this concept is expressed
is by the strength of a causal effect. We say that smoking has a strong effect on
lung cancer risk because smokers have about 10 times the risk of lung cancer
as nonsmokers. We say that smoking has a weaker effect on myocardial infarc-
tion because the risk of a heart attack is only about twice as great in smokers
as in nonsmokers. With respect to an individual case of disease, however, every
component cause that played a role was necessary to the occurrence of that case.
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According to the causal pie model, for a given case of disease, there is no such
thing as a strong cause or a weak cause. There is only a distinction between
factors that were causes and factors that were not causes.

To understand what epidemiologists mean by strength of a cause, we need to
shift from thinking about an individual case to thinking about the total burden of
cases occurring in a population. We can then define a strong cause to be a compo-
nent cause that plays a causal role in a large proportion of cases and a weak cause
to be a causal component in a small proportion of cases. Because smoking plays
a causal role in a high proportion of the lung cancer cases, we call it a strong
cause of lung cancer. For a given case of lung cancer, smoking is no more impor-
tant than any of the other component causes for that case; but on the population
level, it is considered a strong cause of lung cancer because it causes such a large
proportion of cases.

The strength of a cause defined in this way necessarily depends on the prev-
alence of other causal factors that produce disease. As a result, the concept of a
strong or weak cause cannot be a universally accurate description of any cause.
Suppose we say that smoking is a strong cause of lung cancer because it plays
a causal role in a large proportion of cases. Exposure to ambient radon gas is
considered to be a weaker cause because it has a causal role in a much smaller
proportion of lung cancer cases. Imagine that society eventually succeeds in elim-
inating tobacco smoking, with a consequent reduction in smoking-related cases of
lung cancer. One result is that a much larger proportion of the lung cancer cases
that continue to occur will be caused by exposure to radon gas; eliminating smok-
ing would strengthen the causal effect of radon gas on lung cancer. This example
illustrates that strength of effect is not a biologically stable characteristic of a factor.
From a biologic perspective, the causal role of a factor in producing disease is
neither strong nor weak; the biology of causation corresponds to the identity of
the component causes in a causal mechanism and the ways in which they inter-
act to produce disease. The proportion of the population burden of disease that
a factor causes, which we use to define the strength of a cause, can change from
population to population and over time if there are changes in the distribution of
other causes of the disease. The strength of a cause does not portray the biology
of causation.

INTERACTION BETWEEN CAUSES

The causal pie model posits that several causal components act in concert to
produce an effect. Acting in concert does not imply that factors must act at the
same time. Consider the earlier example of the person who sustained trauma to
the head that resulted in an equilibrium disturbance, which led years later to a
fall on an icy path. The earlier head trauma played a causal role in the later hip
fracture, as did the weather conditions on the day of the fracture. If both factors
played a causal role in the hip fracture, they interacted with one another to cause
the fracture, despite the fact that their time of action was many years apart. We
would say that any and all of the factors in the same causal mechanism interact
with one another to cause disease. The head trauma interacted with the weather
conditions and with the other component causes, such as the type of footwear,
the absence of a handhold, and any other conditions that were necessary to the
causal mechanism of the fall and the broken hip that resulted. Bach causal pie can
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be considered as a set of interacting causal components. This model provides a
biologic basis for the concept of interaction that differs from the more traditional
statistical view of interaction. The implication of this difference is discussed in

Chapter 11.

SUM OF ATTRIBUTABLE FRACTIONS

Consider the data in Table 3—1, which shows the rates of head and neck cancer
according to smoking status and alcohol exposure. Suppose that the differences in
the rates reflect causal effects, so that confounding can be ignored. Among those
who are smokers and alcohol drinkers, what proportion of the cases of head and
neck cancer that occur is atiributable to the effect of smoking? We kmow that the
rate for these people is 12 cases per 10,000 person-years. If these same people
were not smokers, we can infer that their rate of head and neck cancer would
be 3 cases per 10,000 person-years. If this difference reflects the causal role of
smoking, we can infer that 9 of every 12 cases (75%) are attributable to smok-
ing among those who smoke and drink alcohol. If we turn the question around
and ask what proportion of disease among these same people is attributable to
alcohol drinking, we would be able to attribute 8 of every 12 cases {67%) to
alcohol drinking,

Can we attribute 75% of the cases to smoking and 67% to alcohol drinking
among those who are exposed to both? The answer is yes, because some cases
are counted more than once as a result of the interaction between smoking and
alcohol consumption. These cases are attributable to both smoking and alcohol
drinking because both factors played a causal role in producing them. One con-
sequence of interaction is that the proportions of disease attributable to various
component causes do not sum to 100%.

A widely discussed but unpublished paper from the 1970s written by scientists
at the National Institutes of Health proposed that as much as 40% of cancer is
attributable to occupational exposures. Many scientists thought that this fraction
was an overestimate and argued against this claim.”* One of the arguments used
in rebuttal was as follows: x percent of cancer is caused by smoking, y percent by
diet, z percent by alcohol, and so on; when all of these percentages are summed,
only a small percentage, much less than 40%, is left for occupational causes. This
rebuttal, however, is fallacious because it is based on the naive view that every
case of disease has a single cause and that two causes cannot both contribute
to the same case of cancer. Because diet, smoking, asbestos, and various occu-
pational exposures and other factors interact with one another and with genetic

Table 3-1 HyPOTHETICAL RATES
oF Heap anD Neck CANCER
(Cases »ER 10,000 PERSON-YEARS)
ACCORDING TO SMOKING STATUS
AND ALCOHOL DRINKING

Smoking Status Alcohol Drinking

No Yes
Nonsmoker 1 3
Smoker 4 12
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factors to cause cancer, each case of cancer can be attributed repeatedly to many
separate component causes. The sum of disease attributable to various component
causes has no upper limit.

InpucTiOoN TIME

Because the component causes in a given causal mechanism do not act simul-
taneously, there usually is a period of time between the action of a component
cause and the completion of a sufficient cause. The only exception is the last
component cause to act in a given causal mechanism. The last-acting component
cause completes the causal mechanism, and we can say that disease begins con-
currently with its action. For earlier-acting compenent causes, we can define the
induction period as the time interval that begins concurrently with the action of a
component cause and ends when the final component cause acts and the disease
occurs. Por example, in the illustration of the fractured hip, the induction time
between the head trauma that resulted in an equilibrium disturbance and the later
hip fracture was many years. The induction time between the decision to wear
nongripping shoes and the hip fracture might have been a matter of minutes or
hours. The induction time between the gust of wind that triggered the fall and
the hip fracture might have been seconds or less.

- In an individual instance, we usually cannot know the exact length of an induc-
tion period, because we cannot be sure of the causal mechanism that produces
-disease in an individual instance nor when all the relevant component causes
_w.ﬁ...ﬁvm.n mechanism exerted their causal action. With research data, however, we
icEn learn enough to characterize the induction period that relates the action of a

¢ single component cause to the occurrence of disease in general. An example of a
“o lengthy induction time is the cause-effect relation between exposure of a female
fie “fetus to diethylstilbestrol (DES) and her subsequent development of adenocarci-

.noma of the vagina. The cancer generally occurs after the age of 15 years. Because

. o ....mﬂ..m..nmnmmm exposure to DES occurs during gestation, there is an induction time of

~miore than 15 years for carcinogenesis. During this time, other causes presumably

“.. operate; some evidence suggests that hormonal action during adolescence may be
i partof the mechanism.*
: g ”..ﬂ.ﬁ causal pie model makes it clear that it is incorrect to characterize a dis-
T _._.n_p.mm .w.amm as having a lengthy or brief induction time. 'The induction time can
.. beconceptualized only in relation to a specific component cause. We can say
oo that the induction time relating DES to clear cell carcinoma of the vagina is at

least ‘15 years, but we cannot say that 15 years is the minimum induction time

e for clear cell carcinoma in general. Because each component cause in any causal
S * mechanism can act at a time different from the other component causes, each can
Sty ‘have its own induction time. For the component cause that acts last, the induc-
. tion time always equals zero. If another component cause of clear cell carcinoma
i oof the vagina that acts during adolescence were identified, it would have a much
- shorter induction time than that of DES. Induction time characterizes a specific
~ o cause-effect pair rather than only the effect.
R : Hn carcinogenesis, the terms initintor and promoter are used to refer to compo-

‘" met causes of cancer that act early and late, respectively, in the causal mechanism.
- Cancer itself has often been characterized as a disease process with a long induc-
-~ tion time, but this characterization is a misconception, Any late-acting component
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in the causal process, such as a promoter, will have a short induction time, and
the induction time will always be zero for the last component cause (eg, the gust
of wind causing the broken hip in the earlier example), because after the final
causal component acts, disease has occurred. At that point, however, the presence
of disease is not necessarily apparent. A broken hip may be apparent immediately,
but a cancer that has just been caused may not become noticed or diagnosed for
an appreciable time. The time interval between disease occurrence and its subse-
quent detection, whether by medical testing or by the emergence of symptoms,
is called the latent period* The length of the latent period can be reduced by
improved methods of disease detection. The induction period, however, cannot
be reduced by early detection of disease, because there is no disease to detect
until after the induction period is over. Practically, it may be difficult to distin-
guish between the induction period and the latent period, because there may be
no way to establish when the disease process began if it is not detected until later.
Diseases such as slow-growing cancers may appear to have long induction periods
with respect to many causes, in part because they have long latent periods.
Although it is not possible to reduce the induction period by earlier detection of
disease, it may be possible to observe intermediate stages of a causal mechanism.
The increased interest in biomarkers such as DNA adducts is an example of focus-
ing on causes that are more proximal to the disease occurrence. Biomarkers may
reflect the effects on the organism of agents that have acted at an earlier time.

Is a Cararyst A CAUSE?

Some agents may have a causal action by shortening the induction time of
other agents. Suppose that exposure to factor A leads to epilepsy after an
average interval of 10 years. It may be that exposure to drug B can shorten
this interval to 2 years. Is B acting as a catalyst or as a cause of epilepsy? The
answer is both; a catalyst is a cause. Without B, the occurrence of epilepsy
comes 8 years later than it comes with B, so we can say that B causes the
epilepsy to occur earlier. It is not sufficient to argue that the epilepsy would
have occurred anyway and therefore that B is not a cause of its occurrence.
First, it would not have occurred at that time, and the time of occurrence
is considered part of the definition of an event. Second, epilepsy will occur
later only if the person survives an additional 8 years, which is not certain.
Agent B therefore determines when the epilepsy occurs, and it can deter-
mine whether it occurs at all. For this reason, we consider any agent that
acts as a catalyst of a causal mechanism, shortening the induction period for
other agents, to be a cause. Similarly, any agent that postpones the onset of
an event, drawing out the induction period for another agent, we consider
to be a preventive. It should not be too surprising to equate postponement
with prevention; we routinely use such an equation when we employ the
euphemism that we prevent death, which can only be postponed. We pre-
vent death at a given time in favor of death at a later time. Similarly, slow-
ing the process of atherosclerosis can result in postponement (and thereby
prevention) of cardiovascular disease and death.
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THE PROCESS OF SCIENTIFIC INFERENCE

Much epidemiologic research is aimed at uncovering the causes of disease. Now
that we have a conceptual model for causes, how do we determine whether a
given relation is cansal? Some scientists refer to checklists for causal inference, and
others focus on complicated statistical approaches, but the answer to this question
is not to be found in checklists or statistical methods. The question itself is tan-
tamount to asking how we apply the scientific method to epidemiologic research,
This question leads directly to the philosophy of science, a topic that goes well
beyond the scope of this book. Nevertheless, it is worthwhile to summarize two
of the major philosophic doctrines that have influenced modern science.

Induction

Since the rise of modern science in the 17th century, scientists and philosophers
have puzzled over the question of how to determine the truth about assertions
that deal with the empirical world. From the time of the ancient Greeks, deductive
methods have been used to prove the validity of mathematic propositions. These
methods enable us to draw airtight conclusions because they are self-contained,
starting with a limited set of definitions and axioms and applying rules of logic
that guarantee the validity of the method. Empirical science is different, however.
Assertions about the real world do not start from arbitrary axioms, and they
involve observations on nature that are fallible and incomplete. 'These stark differ-
ences from deductive logic led early modern empiricists, such as Francis Bacon,
to promote what they considered a new type of logic, which they called induction
(not to be confused with the concept of an induction period). Induction was an
indirect method used to gain insight into what has been metaphorically described
as the fabric of nature.

‘The method of induction starts with observations on nature. To the extent that
the observations fall into a pattern, they are said to induce in the mind of the
observer a suggestion of a more general statement about nature. The general state-
ment can range from a simple hypothesis to a more profound natural law or nat-
ural relation. The statement about nature is reinforced with further observations
or refuted by contradictory observations. For example, suppose an investigator
in New York conducts an experiment to determine the boiling point of water
and observes that the water boils at 100°C. The experiment is repeated many
times, each time showing that the water boils at about 100°C. By induction, the
investigator concludes that the boiling point of water is 100°C. The induction
itself involves an inference beyond the observations to a general statement that
describes the nature of boiling water. As induction became popular, it was seen to
differ considerably from deduction. Although not as well understood as deduction,
the approach was considered a new type of logic, inductive logic.

Although induction, with its emphasis on observation, represented an impor-
tant advance over the appeal to faith and authority that characterized medieval
scholasticism, it was not long before the validity of the new logic was ques-
tioned. The sharpest criticism came from the skeptical philosopher David Hume,
who pointed out that induction had no logical force. Rather, it amounted to the
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assumption that what had been observed in the past would continue to occur in
the future. When supporters of induction argued that induction was a valid pro-
cess because it had been seen to work on numerous occasions, Hume countered
that the argument was an example of circular reasoning that relied on induction
to justify itself. Hume was so profoundly skeptical that he distrusted any inference
based on observation because observations depend on sense perceptions and are
therefore subject to error.

,_nwméﬁmgoéma

Hume’s criticisms of induction have been a powerful force in modern scientific
philosophy. The most influential reply to Hume was offered by Karl Popper.
Popper accepted Hume’s point that in empirical science one cannot prove the
validity of a statement about nature in any way that is comparable with a deduc-
tive proof. Popper’s philosophy, known as refutationism, held that statements about
nature can be “corroborated” by evidence, but corroboration does not amount to
a logical proof. On the other hand, Popper also asserted that statements about
nature can be refuted by deductive logic. To grasp the point, consider the earlier
example of observing the boiling point of water. The refutationist view is that the
repeated experiments showing that water boils at 100°C corroborate the hypoth-
esis that water boils at this temperature, but they do not prove it* A colleague
of the New York researcher who works in Denver, a city located at high altitude,
would find that water there boils at 94°C, This single contrary observation car-
ries more weight regarding the hypothesis about the boiling point of water than
thousands of repetitions of the initial experiment at sea level,

The asymmetric implications of a refuting observation compared with support-
ing observations are the essence of the refutationist view. This school of thonght
encourages scientists to subject a new hypothesis to rigorous tests that may falsify
the hypothesis in preference to repetitions of the initial observations that add
little beyond the weak corroboration that replication can supply. The implication
for the method of science is that hypotheses should be evaluated by subjecting
them to crucial tests. If a test refutes a hypothesis, a new hypothesis needs to be
formulated that can then be subjected to further tests. After finding that water
boils in Denver at a lower temperature than it boils in New York, the investigator
must discard the hypothesis that water boils at 100°C and replace it with a more
refined hypothesis, such as one that will explain the difference in boiling points
under different atmospheric pressures. This process describes an endless cycle of
conjecture and refutation. The conjecture, or hypothesis, is the product of scientific
insight and imagination. It requires little justification except that it can account
for existing observations. A useful approach is to pose competing hypotheses to
explain existing observations and to test them against one another. The refutation-
ist philosophy postulates that all scientific knowledge is tentative because it may
one day need to be refined or even discarded. In this philosophy, what we call
scientific knowledge is a body of currently unrefuted hypotheses that appear to
explain existing observations.

How can an epidemiologist apply refutationist thinking to his or her work? If
causal mechanisms are stated specifically, an epidemiologist can construct crucial
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tests of competing hypotheses. For example, when toxic shock syndrome was
first studied, there were two competing hypotheses about the origin of the toxin.
In one, the toxin responsible for the disease was a chemical in the tampon, and
women using tampons were exposed to the toxin directly from the tampon. In
the other hypothesis, the tampon acted as a culture medium for staphylococci
that produced the toxin. Both hypotheses explained the correlation of toxic shock
occurrence and tampon use, The two hypotheses, however, led to opposite predic-
tions about the relation between the frequency of changing tampons and the risk
of toxic shock. Tf chemical intoxication were the cause, more frequent tampon
changes would lead to more exposure to the toxin and possible absorption of a
greater overall dose. This hypothesis predicted that women who changed tam-
pons more frequently would have a higher risk of toxic shock syndrome than
women who changed tampons infrequently. The culture-medium hypothesis pre-
dicted that the women who change tampons frequently would have a lower risk
than those who left the tampon in for longer periods, because a short duration
of use for each tampon would prevent the staphylococci from multiplying enough
to produce a damaging dose of toxin, Epidemiologic research, which showed that
infrequent changing of tampons was associated with greater risk of toxic shock,
refuted the chemical theory.

Critics of refutationism point out that refutation is not logically certain because
it depends on theories, assumptions, and observations, all of which are susceptible
to error. In epidemiclogy, for example, any study result may be influenced by an
obscure bias, which is an inescapable source of uncertainty. Among the dissenting
philosophic views is that of Thomas Kuhn,® who held that it is ultimately the col-
lective beliefs of the community of scientists that determines what is accepted as
truth about nature. According to Kuhn, the truth is not necessarily objective but
rather something determined by consensus. Feyerabend,” another skeptic, held
that science proceeds through intellectual anarchy, without any coherent method.
A more moderate although still critical view was taken by Haack.®® She saw sci-
ence as an extension of everyday inquiry, employing pragmatic methods that she
likened to solving a crossword puzzle, integrating clues with other answers in a
trial-and-error approach. Despite these criticisms, refutationism has been a posi-
tive force in science by encouraging bold, testable theories and then fostering a
valuable skeptical outlook by subjecting those theories to rigorous challenges.

Causal Criteria

Earlier we said that there is no simple checklist that can determine whether
an observed relation is causal. Nevertheless, attempts at such checklists have
appeared. Most of these lists stem from the canons of inference described by John
Stuart Mill.'* The most widely cited list of causal criteria, originally posed as a
list of standards, is attributed to Hill,"”! who adapted them from the US. Surgeon
General's 1964 report on Smoking and Health.”? The Hill standards, often labeled
the Hill criteria, are listed in Table 3-2, along with some problems related to each
of the criteria.

Although Hill did not propose these criteria as a checklist for evaluating
whether a reported association could be interpreted as causal, many others have
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Table 3-2 Causar CRITERIA OF HILL

Criterion Problems with the Criterion

1. Strength Strength depends on the prevalence of other
causes; it is not a biologic characteristic and can be
confounded.

2. Consistency Causal relations have exceptions that are understood
best with hindsight.

3. Specificity A cause can have many effects.

4. Temporality It may be difficult to establish the temporal sequence
between cause and effect.

5. Biologic gradient It can be confounded; threshold phenomena would
not show a progressive relation.

6. Plausibility Too subjective

7. Coherence How does it differ from consistency or plausibility?

8. Experimental evidence Not always available

9. Analogy Analogies abound.

attempted to apply them in that way. Admittedly, the process of causal inference as
described earlier is difficult and uncertain, making the appeal of a simple checklist
undeniable. Unfortunately, this checklist, like all others with the same goal, fails
to deliver on the hope of clearly distinguishing causal from noncausal relations.
Consider the first criterion, strength. It is tempting to believe that strong associa-
tions are more likely to be causal than weak ones, but as we saw in our discussion
of causal pies, not .mdeN component cause has a strong association with the dis-
ease that it produces; strength of association depends on the prevalence of other
factors. Some causal associations, such as the association between cigarette smok-
ing and coronary heart disease, are weak. Furthermore, a strong association can
be noncausal, a confounded result stemming from the effect of another risk factor
for the disease that is highly correlated with the one under study. For example,
birth order is strongly associated with the occurrence of Down syndrome, but it
is a confounded association that is completely explained by the effect of maternal
age. If weak associations can be causal and strong associations can be noncausal,
it does not appear that strength of association can be considered a criterion for
causality.

The third criterion (see Table 3-2}, specificity, suggests that a relation is more
likely to be causal if the exposure is related to a single outcome rather than myr-
iad outcomes. This criterion is misleading because it implies, for example, that
the more diseases with which smoking is associated, the greater the evidence
that smoking is not causally associated with any of them. The fifth criterion, bio-
logic gradient, is often taken as a sign of a causal relation, but it can just as well
result from confounding or other biases as from a causal connection. The relation
between Down syndrome and birth order, mentioned earlier, shows a biologic
gradient despite being completely explained by confounding from maternal age.

Other criteria from Hill’s list are vague (eg, consistency, plausibility, coher-
ence, analogy) or do not apply in many settings (eg, experimental evidence). The
only characteristic on the list that is truly a causal criterion is temporality, which
implies that the cause comes before the effect. This criterion, which is part of
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the definition of a cause, is a useful one, although it may be difficult to establish
the proper time sequence for cause and effect. For example, does stress lead to
overeating, or does overeating lead to stress? It usually is better to avoid a check-
list approach to causal inference and instead consider approaches such as conjec-
ture and refutation. Checklists lend a deceptive kind of mindless authority to an
inherently imperfect and creative process. In contrast, causal inference based on
conjecture and refutation fosters a highly desirable critical scrutiny.

Although checklists may not be appropriate for causal inference, the points laid
out by Hill are still important considerations. The criteria may be useful when
applied in the context of specific hypotheses. For example, Weiss observed that
the specificity of effects might be important in inferring the beneficial effect of
sigmoidoscopy in screening for colorectal cancer if the association between sig-
moidoscopy and reduced death from colorectal cancer is stronger for cancer
occurring at sites within reach of a sigmoidoscope.”

Generalization in Epidemiology

A useful way to think of scientific generalization is to consider a generalization to
be the elaboration of a scientific theory. A given study may test the viability of
one or more theories. Theories that survive such tests can be viewed as general
statements about nature that tell us what to expect in people or settings that were
not studied. Because theories can be incorrect, scientific generalization is not a
perfect process. Formulating a theory is not a mathematical or statistical process,
and generalization should not be considered a statistical exercise. It is the process
of causal inference itself.

Many people believe that generalizing from an epidemiologic study involves a
mechanical process of making an inference about a target population of which the
study population is considered a sample. This type of generalization does exist, in
the field of survey sampling. In survey sampling, researchers draw samples from a
population to avoid the expense of studying the entire population, which makes
the statistical representativeness of the sample the main concern for generalizing
to the source population.

Although survey sampling is an important tool for characterizing a population
efficiently and may be used in some epidemiologic applications, such as preva-
lence surveys, it is a mechanical tool that does not always share the same goals
as science. Survey sampling is useful for problems such as trying to predict how
a population will vote in an election or what type of laundry soap the people in
a region prefer. These are characteristics that depend on attitudes and for which
there is little coherent biologic theory on which to base a scientific generalization.
Survey results may be quickly outdated (eg, election polls may be repeated weekly
or even daily) and do not apply outside the populations from which the surveys
were conducted. (Disclaimer: I am not saying that social science is not science or
that we cannot develop theories about social behavior, I am saying only that sur-
veys about the current attitudes of a specific group of people are not the same as
social theories.) Even if survey sampling is used to characterize the prevalence of
disease or the medical needs of a population, the objectives are pragmatic rather
than scientific and may not apply outside the study population. Scientific results
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from mﬁ&mﬁio%n. studies, in contrast, seldom need to be repeated weekly to
see if they still apply. An epidemiologic study conducted in Chicago showing
that exposure to ionizing radiation causes cancer does not need to be repeated
in Houston to determine whether jonizing radiation also causes cancer in people
fiving in Houston. Generalization about ionizing radiation and cancer is based on
understanding of the underlying biology rather than on statistical sampling.

It may be helpful to consider the problem of scientific generalization about
causes of cancer from the point of view of a biologist studying carcinogenesis in
mice. Most researchers who study cancer in animals do so because they would
like to understand better the causes of human cancer. If scientific generaliza-
tion depended on having studied a statistically representative sample of the tar-
get population, researchers studying mice would have nothing to contribute to
the understanding of human cancer. Mouse researchers obviously do not study
representative samples of people; they do not even study representative samples
of mice. Instead, they seek mice that have uniformly similar genes and perhaps
certain biologic characteristics. In choosing mice fo study, they have to consider
mundane issues such as the cost of the mice. Although researchers studying ani-
mals are unlikely to worry about whether their mouse or rabbit subjects are statis-
tically representative of all mice or rabbits, they may consider whether the biclogy
of the animal population they are studying is similar to (and representative of)
that of humans. This type of representativeness, however, is not statistical repre-
sentativeness based on sampling from a source population; it is a biologic rep-
resentativeness based on scientific knowledge. Despite the absence of statistical
representativeness, no one seriously doubts the contribution that animal research
can make to the understanding of human disease.

Many epidemiologic activities, such as measuring the prevalence of patients in
need of dialysis, do require surveys to characterize a specific population, but these
activities are usually examples of applied epidemiology rather than the science
of epidemiology. The activities of applied epidemiology involve taking already
established epidemiologic knowledge and applying it to specific settings, such as
preventing malaria transmission by reducing the mosquito vector population or
reducing lung cancer and cardiovascular disease occurrence by implementing an
antismoking campaign. The activities of epidemiologic research, as in laboratory
science, move away from the specific toward the general. We make specific obser-
vations in research studies and then hope to generalize from them to a broader
base of understanding. This process is based more on scientific knowledge, insight,
and conjecture about nature than it is on the statistical representativeness of the
actual study participants. This principle has important implications for the design
and interpretation of epidemiologic studies (see Chapter 7).

QUESTIONS

1. Criticize the following statement: The cause of tuberculosis is infection
with the tubercle bacillus.

2. A trait in chickens called yellow shank occurs when a specific genetic strain
of chickens is fed yellow corn. Farmers who own only this strain of chickens
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observe the trait to depend entirely on the nature of the diet, specifically
whether they feed their chickens yellow corn. Farmers who feed all of their
chickens only :yellow corn but own several strains of chicken observe the
trait to be genetic. What argument could you use to explain to both kinds
of farmer that the trait is both environmental and genetic?

3. A newspaper article proclaims that diabetes is neither genetic nor environ-
mental but multicausal. Another article announces that one half of all colon
cancer cases are linked to genetic factors. Criticize both messages.

4, Suppose a new treatment for a fatal disease defers the average time before
onset of death ameng those with the disease for 20 years beyond the time
when-they would have otherwise died. Is it proper to say that this new
treatment reduces the risk of death, or does it merely postpone death?

.m Tt is J.%Hmmw more difficult to study an exposure-disease relation that has
‘a'long ‘induction period than one that has a short induction period. What
. “difficulties ensue because the exposure-disease induction period is long?

m......m&..%omm that both A and B are causes of a disease that is always fatal,
50 that the disease can occur only once in a single person. Among people

e .....mwm..ommm to both A and B, what is the maximum proportion of disease that
.- can be attributed to either A or B? What is the maximum for the sum of

. the amount attributable to A and the amount attributable to B? Suppose that
" Avand B exert their causal influence only in different causal mechanisms, so

_ that they never act through the same mechanism. Would that change your
© - answer?

“7. Adherents of induction claim that we all use this method of inference

S0 every day. We assume, for example, that the sun will rise tomorrow as it
© 7 has in the past, Critics of induction claim that this knowledge is based on

belief and assumption and that it is no more than a psychological crutch.

o Why should it matter to a scientist whether scientific reasoning is based on

"+ "induction or on a different approach, such as conjecture and refutation?

m Give an example of competing hypotheses for which an epidemiologic

" study would provide a refutation of at least one.

S m Could a causal association fail to show evidence of a biologic gradient

- (ie, Hill's fifth criterion)? Explain.

“::710. Suppose you are studying the influence of socioeconomic factors on car-
“odiovascular disease. Would the study be more informative if (1) the study
" i participants had the same distribution of socioeconomic factors as the gen-
i eral population or (2) the study participants were recruited so that there
.. iwere equal numbers of participants in each category of the sociceconomic

s .” v variables? Why?
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Measuring Disease Occurrence
and Causal Effects

As with most sciences, measurement is a central feature of epidemiology, which
has been defined as the study of the occurrence of illness.' The broad scope
of epidemiology demands a correspondingly broad interpretation of illness, to
include injuries, birth defects, health outcomes, and other health-related events
and conditions. The fundamental observations in epidemiology are measures of
the occurrence of illness. In this chapter, T discuss several measures of disease
frequency, including risk, incidence rate, and prevalence. I also examine how these
fundamental measures can be used to obtain derivative measures that aid in
quantifying potentially causal relations between exposure and disease.

MEASURES OF DISEASE OCCURRENCE
Risk and Incidence Proportion

The concept of risk for disease is widely used and reasonably well understood
by many people. It is measured on the same scale and interpreted in the same
way as a probability. Epidemiologists sometimes speak about risk applying to an
individnal, in which case they are describing the probability that a person will
develop a given disease. It is usually pointless, however, to measure risk for a
single person, because for most diseases, the person simply either does or does
not contract the disease. For a larger group of people, we can describe the pro-
portion who developed the disease. If a population has N people and A people
of the N develop disease during a period of time, the proportion A/N represents
the average risk of disease in the population during that period:

Risk = A Number of subjects developing disease during a time period

N Number of subjects followed for the time period
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The measure of risk requires that all of the N people are followed for the entire
time during which the risk is being measured. The average risk for a group is also
referred to as the incidence proportion. The word risk often is used in reference to
a single person, and incidence proportion is used in reference to a group of people
(Table 4-1). Because averages taken from populations are used to estimate the
risk for individuals, the two terms often are used synonymously. We can use risk
or incidence proportion to assess the onset of disease, death from a given disease,
or any event that marks a health outcome.

One of the primary advantages of using risk as a measure of disease frequency
is the extent to which it is readily understood by many people, including those
who have little familiarity with epidemiology. To make risk useful as a technical
or scientific measure, however, we need to clarify the concept. Suppose you read
in the newspaper that women who are 60 years old have a 2% risk of dying of
cardiovascular disease. What does this statement mean? If you consider the possi-
bilities, you may soon realize that the statement as written cannot be interpreted.
It is certainly not true that a typical 60-year-old woman has a 2% chance of dying
of cardiovascular disease within the next 24 hours or in the next week or month.
A 2% risk would be high even for 1 year, unless the women in question have one
or more characteristics that put them at unusually high risk compared with most
60-year-old women, The risk of developing fatal cardiovascular disease over the
remaining lifetime of 60-year-old women, however, would likely be well above 2%.
There might be some period over which the 2% figure would be correct, but any
other period of time would imply a different value for the risk.
~ 'The only way to interpret a risk is to know the length of time over which the
risk applies. This period may be short or long, but without identifying it, risk
values are not meaningful. Over a very short time period, the risk of any partic-
ular disease is usually extremely low. What is the probability that a given person
will develop a given disease in the next 5 minutes? It is close to zero. The total
risk over a period of time may climb from zero at the start of the period to a
maximum theoretical limit of 100%, but it cannot decrease with time. Figure 41
illustrates two different possible patterns of risk during a 20-year interval. In pat-
tern A, the risk climbs rapidly early during the period and then plateaus, whereas
in pattern B, the risk climbs at a steadily increasing rate during the period.

How might these different risk patterns occur? As an example, a pattern similar
to A could occur if a person who is susceptible to an infectious disease becomes
immunized, in which case the leveling off of risk is sudden, not gradual. Pattern
A also could oceur if those who come into contact with a susceptible person
become immunized, reducing the susceptible person’s risk of acquiring the disease.
A pattern similar to B could occur if a person who has been exposed to a cause

Table -1 COMPARISON OF INCIDENCE PROPORTION (RISK)
AND INCIDENCE RATE

Property Incidence Proportion Incidence Rate
Smallest value 0 0

Greatest value 1 Infinity

Units {dimensionality) None 1/time

Interpretation Probability Inverse of waiting time
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Figure 4-1 Two possible patterns of disease risk with time.

is nearing the end of the typical induction time for the causal action, such as
tisk of adenocarcinoma of the vagina among young women who were exposed
to diethylstilbestrol (DES) while they were fetuses, as discussed in Chapter 3.
In that example, the shape of the curve is similar to that of B in Figure 4-1,
but the actual risks are much lower than those in Figure 4-1. Another phenom-
enon that can give rise to pattern B is the aging process, which often leads to
sharply increasing risks as people progress beyond middle age.

Risk is a cumulative measure, For a given person, risk increases with the length
of the risk period. For a given risk period, however, risks for a person can rise
or fall with time. Consider the 1-year risk of dying in an automobile crash for a
driver. For any one person during a period of 1 year, the risk cumulates steadily
from zero at the beginning of the year to a final value at the end of that year,
Nevertheless, the 1-year risk is greater for most drivers in their teenage years than
for the same drivers when they reach their 50s.

Risk carries an important drawback as a tool for assessing the occurrence of
illness; over any appreciable time interval, it is usually technically impossible to
measure risk, The reason is a practical one: For almost any population followed
for a sufficient time, some people in the population will die from causes other
than the outcome under study.

Suppose that you are interested in measuring the occurrence of domes-
tic violence in a population of 10,000 married women over a 30-year period.
Unfortunately, not all 10,000 women will survive the 30-year period. Some may
die from extreme instances of domestic violence, but many more are likely to die
from cardiovascular disease, cancer, infection, vehicular injury, or other causes.
What if 2 woman died after S years of being followed without having been a
victim of domestic violence? We could not say that she would not have been
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a victim of domestic violence during the subsequent 25 years. If we count her
as part of the denominator, N, we will obtain an underestimate of the risk of
domestic violence for a population of women who do survive 30 years. To under-
stand why, imagine that there are many women who do not survive the 30-year
follow-up period. It is likely that among them there are some women who would
have experienced domestic violence if they had instead survived. If we count the
women who die during the follow-up period in the denominator, N, of a risk
measure, then the numerator, A, which gives the number of cases of domestic vio-
lence, will be underestimated because A is supposed to represent the number of
victims of domestic violence among a population of women who were followed
for a full 30 years.

This phenomenon of people being removed from a study through death from
other causes is sometimes referred to as competing risks. There is one outcome for
which there can be no competing risk: the outcome of death from any cause. If
we study all deaths, there is no possibility of someone dying of a cause that we
are not measuring. For any other outcome, it will always be possible for someone
to die before the end of the follow-up period without experiencing the event that
we are measuring. Therefore, unless we are studying all deaths, competing risks
become a consideration.

Over a short period of time, the influence of competing risks usually is small.
It is not unusual for studies to ignore competing risks if the follow-up period
is short. For example, in the experiment in 1954 in which the Salk vaccine was
tested, hundreds of thousands of schoolchildren were given either the Salk vaccine
or a placebo. All of the children were followed for 1 year to assess the vaccine’s
efficacy. Because only a small proportion of school-age children died of compet-
ing causes during the year of the study, it was reasonable to report the results
of the Salk vaccine trial in terms of the observed risks. When study participants
are older or are followed for longer periods, competing risks are greater and may
need to be taken into account. One way to remove competing risks is to measure
incidence rates instead, and convert these to risk measures, and another is to use
a life-table analysis. Both approaches are described later in this chapter.

A related issue that affects long-term follow-up is loss to follow-up. Some people
may be hard to track to assess whether they have developed disease. They may
move away or choose not to participate further in a research study. The difficulty
in interpreting studies in which there have been considerable losses to follow-up
is sometimes similar to the challenge of interpreting studies in which there are
strong competing risks. In both situations, the researcher lacks complete follow-up
of a study group for the intended period of follow-up.

Because of competing risks, it is often useful to think of risk or incidence pro-
portion as hypothetical measures in the sense that they usually cannot be directly
observed in a population. If competing risks did not occur and all losses to fol-
low-up could be avoided, we could measure incidence proportion directly in a
population by dividing the number of observed cases by the number of people
in the population followed. As mentioned earlier, if the outcome of interest is
death from any cause, there will be no competing risk; any death that occurs
represents an outcome that will count in the numerator of the risk measure. Most
attempts to measure disease risk are focused on outcomes more specific than
death from any cause, such as death from a specific cause (eg, cancer, multiple
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-+ sclerosis, infection) or the occurrence of a disease rather than death. For these

- outcomes, there is always the possibility of competing risks. In reporting the frac-

o “tion A/N, which is the observed number of cases divided by the number of peo-
- “ple who were initially being followed, the incidence proportion that would have

been observed had there been no competing risk will be underestimated, because

competing risks will have removed some people from the at-risk population
before their disease developed.

ATrack RATE AND CASE-FATALITY RATE

A term for risk or incidence proportion that is sometimes used in connection
with infectious outbreaks is atfack rate. An attack rate is the incidence pro-
portion, or risk, of contracting a condition during an epidemic period. For
example, if an influenza epidemic has a 10% attack rate, 10% of the popu-
lation will develop the disease during the epidemic period. The time refer-
ence for an attack rate is usually not stated but is implied by the biology of
the disease being described. It is usually short, typically no more than a few
months, and sometimes much less. A secondary attack rate is the attack rate
among susceptible people who come into direct contact with primary cases,
the cases infected in the initial wave of an epidemic (see Chapter 6).
Another version of the incidence proportion that is encountered fre-
quently in clinical medicine is the case-fatality rate, which is described in
greater detail in Chapter 13. The case-fatality rate is the proportion of peo-
ple dying of the disease (fatalities) among those who develop the disease
{cases). Thus, the population at risk when a case-fatality rate is used is the
population of people who have already developed the disease. The event
being measured is not development of the disease but rather death from the
disease (sometimes all deaths among patients, rather than only deaths from
the disease, are counted). Like an attack rate, the case-fatality rate is seldom
accompanied by a specific time referent, and this lack of time specificity can
make it difficult to interpret. It is typically used and easiest to interpret as a
description of the proportion of people who succumb to an infectious dis-
ease, such as measles. The case-fatality rate for measles in the United States
is about 1.5 deaths per 1000 cases. The period for this risk of death is the
comparatively short time frame during which measles infects an individual,
ending in recovery, death, or some other complication. For diseases that
continue to affect a person over long periods, such as multiple sclerosis, it
is more difficult to interpret a measure such as case-fatality rate, and other
types of mortality or survival measures are used instead.

Incidence Rate

To address the problem of competing risks, epidemiologists often resort to a dif-
ferent measure of disease occurrence, the incidence rate. This measure is similar to
incidence proportion in that the numerator is the same. It is the number of cases,

e
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A, that oceur in a population. The denominator is different. Instead of dividing
the number of cases by the number of people who were initially being followed,
the incidence rate divides the number of cases by a measure of time. This time
measure is the summation across all individuals of the time experienced by the
population being followed.

A Number of subjects developing disease

Incidence rate = =
Time Total time experienced for the subjects followed

One way to obtain this measure is to sum the time that each person is fol-
lowed for every member of the group being followed. If a population was fol-
lowed for 30 years and a given person died after 5 years of follow-up, that person
would have contributed only S years to the sum for the group. Others might
have contributed more or fewer years, up to 2 maximum of the full 30 years of
follow-up.

For people who do not die during follow-up, there are two methods of count-
ing the time during follow-up. These methods depend on whether the disease or
event can recur. Suppose that the disease is an upper respiratory tract infection,
which can occur more than once in the same person. Because the numerator of
an incidence rate could contain more than one occurrence of an upper respiratory
tract infection from a single person, the denominator should include all the time
during which each person was at risk for getting any of these bouts of infection.
In this situation, the time of follow-up for each person continues after that person
recovers from an upper respiratory tract infection. On the other hand, if the event
were death from leukemia, a person would be counted as a case only once. For
someone who dies of leukemia, the time that would count in the denominator of
an incidence rate would be the interval that begins at the start of follow-up and
ends at death from leukemia. If a person can experience an event only once, the
person ceases to contribute follow-up time after the event occurs.

In many situations, epidemiologists study events that can occur more than
once in an individual, but they count only the first occurrence of the event. For
example, researchers may count the occurrence of the first heart attack in an indi-
vidual and ignore (or study separately) second or later heart attacks. If only the
first occurrence of a disease is of interest, the time contribution of a person to
the denominator of an incidence rate will end when the disease occurs. The uni-
fying concept in regard to tallying the time for the denominator of an incidence
rate is simple: The time that goes into the denominator corresponds to the time
experienced by the people being followed during which the disease or event being
studied could have occurred. Hor this reason, the time tallied in the denominator
of an incidence rate is often referred to as the time at risk for disease. The time
in the denominator of an incidence rate should include every moment during
which a person being followed is at risk for an event that would get tallied in the
numerator of the rate. For events that cannot recur, after a person experiences the
event, he or she will have no more time at risk for the disease, and therefore the
follow-up for that person ends with the disease occurrence. The same is true of
a person who dies from a competing risk.

Figure 4-2 illustrates the time at risk for five hypothetical people being fol-
lowed to measure the mortality rate of leukemia. A mortalify rate is an incidence
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Figure 4-2  Time at risk for leukemia death for five people.

rate in which the event being measured is death. Only the first of the five people
died of lenkemia during the follow-up period. This person’s time at risk ended
with his or her death from leukemia. The second person died in an automobile
crash, after which he or she was no longer at risk for dying of leukemia. 'The third
person was lost to follow-up early during the follow-up period. After a person is
lost, even if that person dies of leukemia, the death will not be counted in the
numerator of the rate because the researcher would not know about it. ‘Therefore
the time at risk to be counted as a case in the numerator of the rate ends when a
person becomes lost to follow-up. The last two people were followed for the com-
plete follow-up period. The total time tallied in the denominator of the mortality
rate for leukemia for these five people corresponds to the sum of the lengths of
the five line segments in Figure 4--2.

Incidence rates treat one unit of time as equivalent to another, regardless of
whether these time units come from the same person or from different people,
The incidence rate is the ratio of cases to the total time at risk for disease. This
ratio does not have the same simple interpretability as the risk measure.

A comparison of the risk and incidence rate measures {Table 4-1) shows that
whereas the incidence proportion, or risk, can be interpreted as a wno_um_umrdm
the incidence rate cannot. Unlike a probability, the incidence rate does not wmﬁm
the range of [0,1]. Tnstead, it can theoretically become extremely large without
numeric limit. Tt may at first seem puzzling that a measure of disease occurrence
can exceed 1; how can more than 100% of a population be affected? ‘The answer
is that the incidence rate does not measure the proportion of the population that
is affected. It measures the ratio of the number of cases to the time at risk for dis-
ease. Because the denominator is measured in time units, we can always imagine
that the denominator of an incidence rate could be smaller, making the rate larger.
The numeric value of the incidence rate depends on what time unit is chose.

Suppose that we measure an incidence rate in a population as 47 cases occur-
ring in 158 months. To make it clear that the time tallied in the denominator
of an incidence rate is the sum of the time contribution from various people,
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we often refer to these time values as person-time. We can express the incidence
rate as

47 cases 0.30 cases

158 person-months - person-month

We could also restate this same incidence rate using person-years instead of
person-months:

47 cases 3.57 cases

13.17 person-years B person-year

These two expressions measure the same incidence rate; the only difference is the
time unit chosen to express the denominator. The different time units affect the
numeric values. The situation is much the same as expressing speed in different
units of time or distance. For example, 60 miles/hr is the same as 88 ft/sec or
26.84 m/sec. The change in units results in a change in the numeric value.

The analogy between incidence rate and speed is helpful in understanding
other aspects of incidence rate as well. One important insight is that the inci-
dence rate, like speed, is an instantaneous concept. Imagine driving along 2
highway. At any instant, you and your vehicle have a certain speed. 'The speed
can change from moment to moment. The speedometer gives you a continuous
measure of the current speed. Suppose that the speed is expressed in terms of
kilometers per hour. Although the time unit for the denominator is 1 hour, it
does not require an hour to measure the speed of the vehicle. You can observe
the speed for a given instant from the speedometer, which continuously calcu-
lates the ratio of distance to time over a recent short interval of time. Similarly,
an incidence rate is a momentary rate at which cases are occurring within a
group of people. Measuring an incidence rate takes a nonzero amount of time,
as does measuring speed, but the concepts of speed and incidence rate can be
thought of as applying at 2 given instant. If an incidence rate is measured, as is
often the case, with person-years in the denominator, the rate nevertheless may
characterize only a short interval, rather than a year. Similarly, speed expressed
in kilometers per hour does not necessarily apply to an hour but perhaps to an
instant. It may seem impossible to get an instantaneous measure of incidence
rate, but in a situation analogous to use of the speedometer, current incidence
or mortality for a sufficiently large population can be measured by counting,
for example, the cases occurring in 1 day and dividing that number by the
person-time at risk during that day. Time units can be measured in days or
hours but may be expressed in years by dividing by the number of days or
hours in a year, The unit of time in the denominator of an incidence rate is
arbitrary and has no implication for the period of time over which the rate is
actually measured, nor does it communicate anything about the actual time to
which it applies.

Incidence rates commonly are described as annual incidence and expressed in
the form of “50 cases per 100,000 'This is a clumsy description of an incidence
rate, equivalent to describing an instantaneous speed as an “hourly distance.
Nevertheless, we can translate this phrasing to correspond with what we have
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" already described for incidence rates. We can express this rate as S0 cases per

100,000 persen-years, or 50/100,000 yr™'. The negative 1 in the exponent means
inverse, implying that the denominator of the fraction is measured in units of
years,

Whereas the risk measure typically transmits a clear message to epidemiologists
and nonepidemiologists alike (provided that a time period for the risk is spect-
fied), the incidence rate may not. It is more difficult to conceptualize a measure
of occurrence that uses the ratio of events to the total time in which the events
occur. Nevertheless, under certain conditions, there is an interpretation that we
can give to an incidence rate. The dimensionality of an incidence rate is that of
the reciprocal of time, which is another way of saying that in an incidence rate,
the only units involved are time units, which appear in the denominator. Suppose
we invert the incidence rate. Its reciprocal is measured in units of time. To what
time does the reciprocal of an incidence rate correspond?

Under steady-state conditions—a situation in which the rates do not change
with time—the reciprocal of the incidence rate equals the average time until an
event occurs. This time is referred to as the waiting time. Take as an example the
incidence rate described earlier, 3.57 cases per person-year. This rate can be writ-
ten as 3.57 yr™'; the cases in the numerator of an incidence rate do not have
units. The reciprocal of this rate is 1/3.57 years = 0.28 years. This value can be
interpreted as an average waiting time of 0.28 years until the occurrence of an
event,

As another example, consider a mortality rate of 11 deaths per 1000 person-
years, which could also be written as 11/1000 yr~, I this is the total mortality
rate for an entire population, the waiting time that corresponds to it will repre-
sent the average time until death. The average time until death is also referred
to as the expectation of life or expected survival time. Using the reciprocal of
11/1000 yr™', we obtain 90.9 years, which can be interpreted as the expectation
of life for a population in a steady state that has a mortality rate of 11/1000 yr .

Because mortality rates typically change with time over the time scales that apply
to this example, taking the reciprocal of the mortality rate for a population is not
a practical method for estimating the expectation of life. Nevertheless, it is help-
ful to understand what kind of interpretation we may assign to an incidence rate

or a mortality rate, even if the conditions that justify the interpretation are often
not applicable.

Cuicxen anND EGce

An old riddle asks, “If a chicken and one half lay an egg and one half in
a day and one half, how many eggs does one chicken lay in 1 day?” This
riddle is a rate problem. The question amounts to asking, “What is the rate
of egg laying expressed in eggs per chicken-day?” To get the answer, we
express the rate as the number of eggs in the numerator and the number of
chicken-days in the denominator: 1.5 eggs/[(1.5 chickens) « (1.5 days)] =

LS eggs/2.25 chicken-days. 'This calculation gives a rate of 2/3 egg per
chicken day.
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The Relation Between Risk and Incidence Rate

Because the interpretation of risk is so much more straightforward than the inter-
pretation of incidence rate, it is often convenient to convert incidence rate mea-
sures into risk measures. Fortunately, this conversion usually is not difficult. The
simplest formula to convert an incidence rate to a risk is as follows:

Risk ~ Incidence rate x Time [4-1]

For Equation 4-1 and other such formulas, it is a good habit to confirm that
the dimensionality on both sides of the equation is equivalent. In this case, risk
is a proportion, and therefore has no dimensions. Although risk applies for a spe-
cific period of time, the time period is a descriptor for the risk but not part of
the measure itself. Risk has no units of time or any other quantity built in; it
is interpreted as a probability. The right side of Equation 4-1 is the product of
two quantities, one of which is measured in units of the reciprocal of time and
the other of which is time itself. Because this product has no dimensionality, the
equation holds as far as dimensionality is concerned.

In addition to checking the dimensionality; it is useful to check the range of
the measures in an equation such as Equation 4-1. The risk is a pure number in
the range [0,1]; values outside this range are not permitted. In contrast, incidence
rate has a range of [0,c0], and time also has a range of [0,c0}. The product of
incidence rate and time does not have a range that is the same as risk, because
the product can exceed 1. This analysis shows that Equation 4-1 is not applica-
ble throughout the entire range of values for incidence rate and time. In general
terms, Equation 4-1 is an approximation that works well as long as the risk cal-
culated on the left is less than about 20%. Above that value, the approximation
deteriorates.

For example, suppose that a population of 10,000 people experiences an inci-
dence rate of lung cancer of 8 cases per 10,000 person-years. If we followed the
population for 1 year, Equation 4-1 suggests that the risk of lung cancer is 8 in
10,000 for the l-year period (e, 8/10,000 person-years X 1 year), or 0.0008. If
the same rate applied for only 0.5 year, the risk would be one half of 0.0008, or
0.0004. Equation 4-1 calculates risk as directly proportional to both the incidence
rate and the time period, so as the time period is extended, the risk becomes
proportionately greater.

Now suppose that we have a population of 1000 people who experience a mor-
tality rate of 11 deaths per 1000 person-years for a 20-year period. Equation 4-1
predicts that the risk of death over 20 years will be 11/1000 y1™* x 20 yr = 0.2,
or 22%. In other words, Equation 4-1 predicts that among the 1000 people at the
start of the follow-up period, there will be 220 deaths during the 20 years. The
220 deaths are the sum of 11 deaths that occur among 1000 people every year
for 20 years. This calculation neglects the fact that the size of the population at
risk shrinks gradually as deaths occur. If the shrinkage is taken into account, fewer
than 220 deaths will have occurred at the end of 20 years.

Table 4-2 describes the number of deaths expected to occur during each year
of the 20 years of follow-up if the mortality rate of 11/1000 yr* is applied to
a population of 1000 people for 20 years. The table shows that at the end of
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Table 4-2 Numser oF ExPECTED DEATHS OVER 20 YEARS AMONG
1000 ProrrLE WITH A MORTFALITY RATE oF 11 DEaTHS PER 1000
PErson-YEars

Expected Number
Year Alive at Start of Year Expected Deaths Cumulative Deaths

1 1000.000 10.940 10.940
2 989.060 10.820 21.760
3 978.240 10.702 32.461
4 967.539 10.585 43.046
5 956.954 10.469 53.515
6 946.485 10.354 63.869
7 936.131 10.241 74.110
8 925.8%0 10.129 84.239
9 915.761 10.018 94.257
10 905.743 9.909 104.166
11 895.834 9.800 113.966
12 886.034 9.693 123.659
13 876.341 9.587 133.246
14 866.754 9.482 142.728
15 857.272 9.378 152.106
16 847.894 9.276 161.382
17 838.618 9.174 170.556
18 829.444 9.074 179.630
19 820.370 8.975 188.605
20 811.395 8.876 197.481

20 years, about 197 deaths have occurred, rather than 220, because a steadily
smaller population is at risk of death each year. The table also shows that the
prediction of 11 deaths per year from Equation 4--1 is a good estimate for the
early part of the follow-up but the number of deaths expected each year gradually
becomes considerably lower than 11. Why is the number of expected deaths not
quite 11 even for the first year, in which there are 1000 people being followed
at the start of the year? As soon as the first death occurs, the number of people
being followed is less than 1000, which influences the number of expected deaths
in the first year. As is seen in Table 4-2, the expected deaths decline gradually
throughout the period of follow-up.

If we extended the calculations in the table further, the discrepancy between
the risk calculated from Equation 4-1 and the actual risk would grow. Figure 4-3
graphs the cumulative total of deaths that would be expected and the number pro-
jected from Equation 4-1 over 50 years of follow-up. Initially, the two curves are
close, but as the cumulative risk of death rises, they diverge. The bottom curve in
the figure is an exponential curve, related to the curve that describes exponential
decay. If a population experiences a constant rate of death, the proportion remain-
ing alive follows an exponential curve with time. This exponential decay is the
same curve that describes radioactive decay. If a population of radioactive atoms
converts from one atomic state to another at a constant rate, the proportion of
atoms left in the initial state follows the curve of exponential decay. The lower

[
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Figure 4-3 Cumulative number of deaths among 1000 people with a mortality
rate of £1 deaths per 1000 person-years, presuming no population shrinkage (see
Fquation 4-1) and taking the population shrinkage into account (ie, exponential decay).

curve in Figure 4-3 is actually the complement of an exponential decay curve.
Instead of showing the decreasing number remaining alive (ie, the curve of expo-
nential decay), it shows the increasing number who have died, which is the total
number in the population minus the number remaining alive. Given enough time,
this curve gradually flattens, and the total number of deaths approaches the total
number of people in the population. In contrast, the curve based on Equation 4-1
continues to predict 11 deaths each year regardless of how many people remain
alive, and it eventually would predict a cumulative number of deaths that exceeds
the original size of the population.

Clearly, Equation 4-1 cannot be used to calculate risks that are large, because
it provides a poor approximation in such situations. For many epidemiologic
applications, however, the calculated risks are reasonably small, and Equation 4-1
is quite adequate for converting incidence rates to risks.

Equation 41 calculates risk for a time period over which a single incidence rate
applies. The calculation assumes that the incidence rate, an instantanecus concept,
remains constant over the time period. What if the incidence rate changes with
time, as is often the case? In that event, rigk can still be calculated, but it should be
calculated first for separate subintervals of the time period. Each of the time inter-
vals should be short enough so that the incidence rate that applies to it could be
considered approximately constant. The shorter the intervals, the better the overall
accuracy of the risk calculation, although the intervals should not be so short that
there are inadequate data to obtain meaningful incidence rates for each interval,

The method of calculating risks over a time period with changing incidence
rates is known as survival analysis. It can also be applied to nonfatal risks, but the
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approach originated from data related to deaths. The method is implemented by

creating a table similar to Table 4--2, called a life fuble. The purpose of a life table

is to calculate the probability of surviving through each successive time interval that

constitutes the period of interest. The overall survival probability is equal to the

cumulative product of the probabilities of surviving through each successive interval,
and the overall risk of death is equal to 1 minus the overall probability of survival.
Table 4-3 is a simplified life table that enables calculation of the risk of dying

of a motor vehicle injury in a hypothetical cohort of 100,000 people followed

from birth through age 85.% In this example, the time periods correspond to age

intervals. The number initially at risk has been arbitrarily set to 100,000 people.

The life-table calculation is strictly hypothetical, because the number at risk at

the start of each age group is reduced only by deaths from motor vehicle injury

in the previous age group, ignoring all other causes of death. With this assump-

tioni that there are no competing risks, the results are interpretable as risks or

.m.nwiﬂm probabilities that would result if the only risk faced by a population was

- the one under study. The risk of dying of a motor vehicle injury for each of the
L age intervals is calculated by taking the number of deaths in each age interval

(column 3) and dividing it by the number who are at risk during that age interval
" (column 2). 'The survival probability in column $ is equal to 1 minus the risk for

- that age category. The cumulative survival probability (column 6) is the product

of the age-specific survival probabilities up to that age. The bottom number in
column 6 is the probability of surviving to age 85 without dying of 2 motor vehi-
cle injury, assuming that there are no competing risks (ie, assuming that without
a motor vehicle injury, the person would survive to age 85).

Subtracting the final cumulative survival probability from 1 gives the total risk,
from birth until the 85th birthday, of dying of a motor vehicle injury. This risk
is 1 — 0.98378 = 1.6%. Because this calculation is based on the assumption that
everyone will live to their 85th birthday except those who die of motor vehicle

- -accidents, it overstates the actual proportion of people who will die in a motor
. - vehicle accident before they reach age 85. Another assumption in the calculation

- s that these mortality rates, which have been gathered from a cross section of the

= - -, -population at a given time, can be applied to a group of people over the course of

] mm years of life, If the mortality rates changed with time, the risk estimated from
~“the life table would be inaccurate.

RS Hnsm 4-3 Lire TABLE FOR DeATH #ROM MOTOR VEHICLE INJURY FROM
R BirTH THROUGH AGE 85°

‘Age " - Number Deaths Risk Survival Cumulative Survival

Lo at Risk  in Interval of Dying Probability Probability
0-14 - 100,000 70 0.00070 0.99930 0.99930
15<24-- 99,930 358 0.00358 0.99642 0.59572
: Nm.l...ﬁ_. - 99,572 400 0.00402 0.99598 0.99172
45=64 . 99,172 365 0.00368 0.99632 0.98807

m.m.»m* 58,807 429 0.00434 0.99566 0.98378

*Moftality rates are deaths per 100,000 person-years.
Adapted from Iskrant and Joliet, Table 24.
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Table 4-3 shows a hypothetical cohort being followed for 85 years. If this had
been an actual cohort, there would have been some people lost to follow-up and
some who died of other canses. When follow-up is incomplete for either of these
reasons, the usual approach is to use the information that is available for those
with incomplete follow-up; their follow-up is described as censored at the time
that they are lost or die of another cause.

Table 4-4 shows what the same cohort experience would look like under the
more realistic situation in which many people have incomplete follow-up. Two
new columns have been added with hypothetical data on the number that are
censored because they were lost to follow-up or died of other causes (column 4)
and the effective number at risk (column 5). The effective number at risk is cal-
culated by taking the number at risk in column 2 and subtracting one half of the
number who are censored (column 4). Subtracting one half of those who are cen-
sored is based on the assumption that the censoring occurred uniformly through-
out each age interval. If there is reason to believe that the censoring tended to
occur ponuniformly within the interval, the calcnlation of the effective number at

risk should be adjusted to reflect that belief.

Point-Source and Propagated Epidemics

An epidemic is an unusually high occurrence of disease. The definition of unusually
high depends on the circumstances, and there is no clear demarcation between
an epidemic and a smaller fluctuation. The high occurrence may represent an
increase in the occurrence of a disease that still occurs in the population in the
absence of an epidemic, although less frequently than during the epidemic, or
it may represent an outbreak, which is a sudden increase in the occurrence of a
disease that is usually absent or nearly absent (Fig. 4—4).

If an epidemic stems from a single source of exposure to a causal agent, it
is considered a point-source epidemic. Examples of point-source epidemics are
food poisoning of restaurant patrons who have been served contaminated food
and cancer occurrence among survivors of the atomic bomb blasts in Hiroshima

Table 4-4 LiFe TasLe POoR DEATH FROM MOTOR VEHICLE INJURY FROM BirTH
THROUGH AGE 85°

Motor Lost to
Vehicle Foliow-up
Injury  or Died Effective Cumulative
Deaths in  of Other Number Risk of Survival Survival
Age At Risk Interval Causes at Risk Dying Probability Probability
0-14 100,000 67 9,500 95,250 0.00070 0.99930 0.99930
15-24 90,433 301 12,500 84,183 0.00358 0.99642 0.99572
25-44 77,632 272 20,000 67,632 0.00402 099598 0.99172
45-64 57,360 156 30,000 42,360 0.00368 0.99632 0.98807
65-84 27,204 64 25,000 14,704 0.00435 0.99565 0.98377

“Mertality rates are deaths per 100,000 person-years.
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Figure 4-4 Epidemic curve for fatal cholera cases during the Broad Street outbreak
in London in 1854.

and Nagasaki. Although the time scales of these epidemics differ dramatically,
along with the nature of the diseases and their causes, all people in both cases
were exposed to the same causal component that produced the epidemic—
contaminated food in the restaurant or ionizing radiation from the bomb blast.
The exposure in a point-source epidemic is typically newly introduced into the
environment, thus accounting for the epidemic.

Typically, the shape of the epidemic curve for a point-source epidemic shows an
initial steep increase in the incidence rate followed by a more gradual decline in the
incidence rate; this pattern is often described as a log-normal distribution. The asym-
metry of the curve stems partly from the fact that biologic curves with a meaningful
zero point tend to be asymmetric because there is less variability in the direction of
the zero point than in the other direction. For example, the distribution of recovery
times for healing of a wound is log-normal. Similarly, the distribution of induction
times until the occurrence of illness after a common exposure is log-normal. If the
zero point is sufficiently far from the modal value, the asymmetry may not be appar-
ent. For example, birth weight has a meaningful zero point, but the zero point is far
from the center of the distribution, and the distribution is almost symmetric.

An example of an asymmetric epidemic curve is that of the 1854 cholera epi-
demic described by John Snow?® In that cutbreak, exposure to contaminated water
in the neighborhood of the water pump at Broad Street in London produced
a log-normal epidemic curve (see Fig. 4-4). Snow is renowned for having con-
vinced local authorities to remove the handle from the pump, but they only did
s0 on September 8 (day 21), when the epidemic was well past its peak and the
number of cases was almost back to zero.

The shape of an epidemic curve also may be affected by the way in which the
curve is calculated. It is common, as in Figure 4-4, to plot the number of new
cases instead of the incidence rate among susceptible people. People who have
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already succumbed to an infectious disease may no longer be susceptible to it for
some period of time. If a substantial proportion of a population is affected by the
outbreak, the number of susceptible people will decline gradually as the epidemic
progresses and the attack rate increases. This change in the susceptible population
leads to a more rapid decline over time in the number of new cases compared
with the incidence rate in the susceptible population. The incidence rate declines
more slowly than the number of new cases because in the incidence rate, the
declining number of new cases is divided by a dwindling amount of susceptible
person-time.

A propagated epidemic is one in which the causal agent is transmitted through
a population. Influenza epidemics are propagated by person-to-person transmis-
sion of the virus. The epidemic of lung cancer during the 20th century was a
propagated epidemic attributable to the spread of tobacco smoking through many
cultures and societies. The curve for a propagated epidemic tends to show a more
gradual initial rise and a more symmetric shape than for a point-source epidemic
because the causes spread gradually through the population. Transmission of
infectious disease within a population is discussed further in Chapter 6, which
also presents the Reed-Frost model, a simple model that describes transmission
of an infectious disease in a closed population.

Although we may think of peint-source epidemics as occwring over a short
time span, they are not always briefer than propagated epidemics. The epidemic
of cancer attributable to exposure to the atomic bombs detonated in Hiroshima
and Nagasaki was a point-source epidemic that began a few years after the explo-
sions and continues into the present. Another possible point-source epidemic
that occurred over decades was an apparent outbreak of multiple sclerosis in the
Faroe Istands that followed the occupation of those islands by British troops dur-
ing the Second World War* (although this interpretation of the data has been
questioned®). Propagated epidemics can occur over extremely short time spans.
An example is epidemic hysteria, a disease often propagated from person to
person in minutes. An example of an epidemic curve for a hysteriz outbreak is
depicted in Figure 4-5. In this epidemic, 210 elementary school children devel-
oped symptoms of headache, abdominal pain, and nausea. These symptoms were
attributed by the investigators to hysteric anxiety.’

Prevalence Proportion

Incidence proportion and incidence rate are measures that assess the frequency of
disease onsets. The numerator of either measure is the frequency of events that
are defined as the occurrence of disease. In contrast, prevalence proportion, often
referred to simply as prevalence, does not measure disease onset. Instead, it is a
measure of disease status.

"The simplest way of considering disease status is to consider disease as being
either present or absent. The prevalence proportion is the proportion of people
in a population who have disease. Consider a population of size N, and suppose
that P individuals in the population have disease at a given time. The prevalence
proportion is P/N. For example, suppose that among 10,000 women residents of
a town on July 1, 2001, 1200 have hypertension. The prevalence proportion of
hypertension among women in that town on that date is 1200/10,000 = 0.12,
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Figure 4-5 Epidemic curve for an outbreak of hysteria among elementary school
children on November 6, 1985.

or 12%. This prevalence applies only to a single point in time, July 1, 2001.
Prevalence can change with time as the factors that affect prevalence change.

What factors affect prevalence? Clearly, disease occurrence affects prevalence.
The greater the incidence of disease, the more people there are who have it.
Prevalence is also related to the length of time that a person has disease. The
longer the duration of disease, the higher the prevalence, Diseases with short
duration may have a low prevalence even if the incidence rate is high. One rea-
son is that if the disease is benign, there may be a rapid recovery. For example,
the prevalence of upper respiratory infection may be low despite a high incidence,
because after a brief period, most people recover from the infection and are no
longer in the disease state. Duration may also be short for a grave disease that
leads to rapid death. 'The prevalence of aortic hemorthage would be low even
with a high incidence because it usually leads to death within minutes. The low
prevalence means that, at any given moment, only an extremely small propor-
tion of people are suffering from an aortic hemorrhage. Some diseases have a
short duration because either recovery or death ensues promptly; appendicitis is
an example. Other discases have a long duration because, although a person can-
not recover from them, they are compatible with a long survival time (although
survival is often shorter than it would be without the disease). Diabetes, Crohn’s
disease, multiple sclerosis, parkinsonism, and glaucoma are examples.

Because prevalence reflects both incidence rate and disease duration, it is not
as useful as incidence alone for studying the causes of disease. It is extremely
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useful, however, for measuring the disease burden on a population, especially if
those who have disease require specific medical attention. For example, the preva-
lent number of people in a population with end-stage renal disease predicts the
need in that population for dialysis facilities.

In a steady state, which is the situation in which incidence rates and disease
duration are stable over time, the prevalence proportion, P, has the following
relation to the incidence rate:

—=1ID [4-2]

In Equation 4-2, I is the incidence rate and Dis the average duration of disease.
The quantity P/{1 — P} is known as the prevalence odds. In general, when a pro-
portion, such as prevalence proportion, is divided by 1 minus the proportion, the
resulting ratio is referred to as the odds for that proportion. If a horse is a 3-to-1
favorite at a racetrack, it means that the horse is thought to have a probability of
winning of 0.75. The odds of the horse winning is 0.75/{1 — 0.75) = 3, usually
described as 3 to 1. Similarly, if a prevalence proportion is 0.75, the prevalence
odds would be 3, and a prevalence of 0.20 would correspond to a prevalence
odds of 0.20/(1 — 0.20) = 0.25. For small prevalences, the value of the prevalence
proportion and that of the prevalence odds are close because the denominator of
the odds expression is close to 1. For small prevalences (eg, <0.1), we can rewrite
Equation 4-2 as follows:

P~ID [4-3]

Equation 4-3 indicates that, given a steady state and 2 low prevalence, prev-
alence is approximately equal to the product of the incidence rate and the
mean duration of disease. Note that this refation does not hold for age-specific
prevalences, In that case, D corresponds to the duration of time spent within that
age category rather than the total duration of time with disease.

As we did eatlier for risk and incidence rate, we should check this equation to
make certain that the dimensionality and ranges of both sides of the equation are
satisfied. For dimensionality, the right-hand sides of Equations 4-2 and 4--3 involve
the product of a time measure, disease duration, and an incidence rate, which has
units of reciprocal of time. The product is dimensionless, a pure number. Prevalence
proportion, like risk or incidence proportion, is also dimensionless, which satisfies
the dimensionality requirement for the two equations, 4-2 and 4-3. The range of
incidence rate and that of mean duration of illness is [0,c0], because there is no
upper limit to an incidence rate or the duration of disease. Therefore Equation 4-3
does not satisfy the range requirement, because the prevalence proportion on the
left side of the equation, like any proportion, has a range of [0,1]. For this rea-
son, Equation 4-3 is applicable only for small values of prevalence. The measure
of prevalence odds in Equation 4-2, however, has a range of [0,0], and it is appli-
cable for all values, rather than just for small values of the prevalence proportion.
We can rewrite Equation 4-2 to solve for the prevalence proportion as follows:

iD

P= =
1+1ID

[4-4]
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Prevalence measures the disease burden in a population. This type of epide-
miologic application relates more to administrative areas of public health than
to causal research. Nevertheless, there are research areas in which prevalence
measures are used more commonly than incidence measures, even to investigate
causes. Examples are birth defects and birth-related phenomena such as birth
weight or preterm birth. We use a prevalence measure when describing the
occurrence of congenital malformations among liveborn infants in terms of the
proportion of these infants who have a malformation. For example, the propor-
tion of infants who are born alive with a defect of the ventricular septum of the
heart is a prevalence. It measures the status of liveborn infants with respect to
the presence or absence of a ventricular septal defect. Measuring the incidence
rate or incidence proportion of ventricular septal defects would require ascer-
tainment of a population of embryos who were at risk for developing the defect
and measurement of the defect’s occurrence among these embryos. Such data
are usually not obtainable, because many pregnancies end before the pregnancy
is detected, and the population of embryos is not readily identified. Even when
a woman knows she is pregnant, if the pregnancy ends early, information about
the pregnancy may never come to the attention of researchers. For these reasons,
incidence measures for birth defects are uncommon. Prevalence at birth is eas-
ier to assess and often is used as a substitute for incidence measures. Although
prevalence measures are easier to obtain, they have a drawback when used for
causal research: Factors that increase prevalence may do so not by increasing
the occurrence of the condition but by increasing the duration of the condition.
For example, a factor associated with the prevalence of ventricular septal defect
at birth could be a cause of ventricular septal defect, but it could also be a fac-
tor that does not cause the defect but instead enables embryos that develop the
defect to survive until birth. On the other hand, there may be practical inter-
est in understanding the factors that are related to being born alive with the
defect.

Prevalence is sometimes used in research to measure diseases that have insidi-
ous onset, such as diabetes or multiple scleresis. These are conditions for which
it may be difficult to define onset, and it therefore may be necessary in some set-
tings to describe the condition in terms of prevalence rather than incidence.

PREVALENCE OF CHARACTERISTICS

Because prevalence measures status, it is often used to describe the status of
characteristics or conditions other than disease in a population. For exam-
ple, the proportion of a population that engages in cigarette smoking often
is described as the prevalence of smoking, The proportion of a population
exposed to a given agent is often referred to as the exposure prevalence.
Prevalence can be used to describe the proportion of people in a popu-
lation who have brown eyes, type O blood, or an active driver’s license.
Because epidemiology relates many individual and population characteris-
tics to disease occurrence, it often employs prevalence measures to describe
the frequency of these characteristics.
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MEASURES OF CAUSAL EFFECTS

A central objective of epidemiclogic research is to study the causes of disease.
How should we measure the effect of exposure to determine whether exposure
causes disease? In a courtroom, experts are asked to opine whether the disease of
a given patient has been caused by a specific exposure. This approach of assigning
causation in a single person is radically different from the epidemiologic approach,
which does not attempt to attribute causation in any individual instance. The
epidemiologic approach is to evaluate the proposition that the exposure is a cause
of the disease in a theoretical sense, rather than in a specific person.

An elementary but essential principle to keep in mind is that a person may be
exposed to an agent and then develop disease without there being any causal con-
nection between the exposure and the disease. For this reason, we cannot con-
sider the incidence proportion or the incidence rate among exposed people to
measure a causal effect. For example, if a vaccine does not confer perfect immu-
nity, some vaccinated people will get the disease that the vaccine is intended to
prevent. The occurrence of disease among vaccinated people is not a sign that
the vaccine is causing the disease, becanse the disease will occur even more fre-
quently among unvaccinated people. It is merely a sign that the vaccine is not a
perfect preventive, To measure a causal effect, we have to contrast the experience
of exposed people with what would have happened in the absence of exposure.

The Counterfactual Ideal

It is useful to consider how to measure causal effects in an ideal way. People differ
from one another in myriad ways. If we compare risks or incidence rates between
exposed and unexposed people, we cannot be certain that the differences in risks
or rates are attributable to the exposure. They could be atiributable to other fac-
tors that differ between exposed and unexposed people. We may be able to mea-
sure and to take into account some of these factors, but others may elude us,
hindering any definite inference. Even if we matched people who were exposed
with similar people who were not exposed, they could still differ in inapparent
ways. The ideal comparison would be the result of a thought experiment: the
comparison of people with themselves, followed through time simultanecusly in
both an exposed and an unexposed state. Such a comparison envisions the impos-
sible, because it requires each person to exist in two incarnations: one exposed
and the other unexposed. If such an impossible goal were achievable, it would
allow us to know the effect of exposure, because the only difference between
the two settings would be the exposure. Because this situation is impossible, it is
called counterfactual.

The counterfactual goal posits not only a comparison of a person with himself
or herself but also a repetition of the experience during the same time period.
Some studies do pair the experiences of a person under both exposed and unex-
posed conditions. The experimental version of such a study is called a crossover
study, because the study subject crosses over from one study group to the other
after a period of time. Although crossover studies come close to the ideal of a
counterfactual comparison, they do not achieve it because a person can be in only
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one study group at a given time. The time sequence may affect the interpretation,
and the passage of time means that the two experiences that are compared may
differ by factors other than the exposure, The counterfactual setting is impossible,
because it implies that a person lives through the same experience twice during
the same time petiod, once with exposure and once without exposure.

In the theoretical ideal of a counterfactual study, each exposed person would
be compared with his or her unexposed counterfactial experience. Everyone is
exposed, and in a parallel universe everyone is also unexposed, with all other
factors remaining the same. The effect of exposure could then be measured by
comparing the incidence proportion among everyone while exposed with the inci-
dence proportion while everyone is unexposed. Any difference in these propor-
tions would have to be an effect of exposure. Suppose we observed 100 exposed
people and found that 25 developed disease in 1 year, providing an incidence pro-
portion of 0.25. We would theoretically like to compare this experience with the
counterfactual, unobservable experience of the same 100 people going through the
same year under the same conditions except for being unexposed. Suppose that 10
people developed disease in those counterfactual conditions. Then the incidence
proportion for comparison would be 0.10. The difference, 15 cases in 100 during
the year, or 0.15, would be a measure of the causal effect of the exposure.

EFFECT MEASURES

Because we can never achieve the counterfactual ideal, we strive to come as close
as possible to it in the design of epidemiclogic studies. Instead of comparing the
experience of an exposed group with its counterfactual ideal, we must compare
their experience with that of a real unexposed population. The goal is to find an
unexposed population that would give a result that is close, if not identical, to
that from a counterfactual comparison.

Suppose we consider the same 100 exposed people mentioned earlier, among
whom 25 get the disease in 1 year. As a substitute for their missing counterfactual
experience, we seek the experience of 100 unexposed persons who can provide
an estimate of what would have occurred among the exposed had they not been
exposed. This substitution is the crucial concern in many epidemiologic stud-
ies: Does the experience of the unexposed group actually represent what would
have happened to the exposed group had they been unexposed? If we observe
10 cases of disease in the unexposed group, how can we know that the difference
between the 25 cases in the exposed group and the 10 cases in the unexposed
group is attributable to the exposure? Perhaps the exposure had no effect but the
unexposed group was at a lower risk for disease than the exposed group, What if
we had observed 25 cases in both the exposed and the unexposed groups? The
exposure might have no effect, but it might also have had a strong effect that was
balanced by the fact that the unexposed group had a higher risk for disease.

To achieve a valid substitution for the counterfactual experience, we resort to
various design methods that promote comparability. One example is the crossover
trial, which is based on comparison of the experience of each exposed person
with himself or herself at a different time. But a crossover trial is feasible only for
an exposure that can be studied in an experimental setting (ie, assigned by the
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investigator according to a study protocol} and only if it has a brief effect. A per-
sistent exposure effect would distort the effect of crossing over from the exposed
to the unexposed group. Another approach is a randomized experiment. In these
studies, all participants are randomly assigned to the exposure groups. Given
enough randomized participants, we can expect the distributions of other char-
acteristics in the exposed and unexposed groups to be similar. Other approaches
involve choosing unexposed study subjects who have the same or similar risk-
factor profiles for disease as the exposed subjects. However the comparability is
achieved, its success is the overriding concern for any epidemiologic study that
aims to evaluate a causal effect.

If we can assume that the exposed and unexposed groups are otherwise com-
parable with regard to risk for disease, we can compare measures of disease
occurrence to assess the effect of the exposure. The two most commonly com-
pared measures are the incidence proportion, or risk, and the incidence rate.
The risk difference (RD) is the difference in incidence proportion or risk between
the exposed and the unexposed groups. If the incidence proportion is 0.25 for
the exposed and 0.10 for the unexposed, the RD is 0.15. With an incidence rate
instead of a risk to measure disease occurrence, we can likewise calculate the
incidence rate difference (IRD) for the two measures, (Terminology note: In older
texts, the RD is sometimes referred to as the atfributable risk. The TRD also has
been called the attributable rate.)

Difference measures such as RD and IRD measure the absolute effect of an
exposure. It is also possible to measure the refative effect. As an analogy, consider
how to assess the performance of an investment over a period of time. Suppose
that an initial investment of $100 became $120 after 1 year. The difference in the
value of the investment at the end of the year and the value at the beginning,
$20, measures the absolute performance of the investment. The relative perfor-
mance is obtained by dividing the absolute increase by the initial amount, which
gives $20/$100, or 20%. Contrast this investment experience with that of another
investment, in which an initial sum of $1000 grew to $1150 after 1 year. For
the latter investment, the absolute increment is $150, far greater than the $20
from the first investment, but the relative performance of the second investment
is $150/8%1000, or 15%, which is worse than the first investment.

We can obtain relative measures of effect in the same manner. We first obtain
an absolute measure of effect, which can be the RD or the IRD, and we then
divide that by the measure of occurrence of disease among unexposed persons.
For risks, the relative effect is given by the following equation:

Risk difference RD

Relative effect = = e
Risk in unexposed R,

where RD is the risk difference and R is the risk among the unexposed. Because
RD =R — R (R, being the risk among exposed persons), this expression can be
rewritten as

RD
Relative effect = m =——=RR -1 [4-5]
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- In Equation 4-§, the risk ratio (RR) is defined as R /R The relative effect is

o fhe risk ratio minus 1 {RR — 1). This result is exactly parallel to the investment

" ‘analogy, in which the relative success of the investment was the ratio of the value
‘after investing divided by the value before investing minus 1. For the smaller of
the two investments, this computation gives ($120/$100) — 1 = 1.2 — 1 = 20%.
If the risk in exposed people is 0.25 and that in unexposed people is 0.10, the
relative effect is (0.25/0.10) — 1, or 1.5 (sometimes expressed as 150%). The RR
is 2.5, and the relative effect is the part of the RR in excess of 1.0 (which is the
value of the RR when there is no effect). By defining the relative effect in this
way, we ensure that we have a relative effect of zero when the absolute effect is
also zero.

Although the relative effect is RR — 1, it is common for epidemiologists to
refer to the RR itself as a measure of relative effect, without subtracting 1. When
the RR is used in this way, it is important to remember that a value of 1 cor-
responds to the absence of an effect. For example, an RR of 3 represents twice
as great an effect as an RR of 2. Sometimes, epidemiologists refer to the percent-
age increase in risk to convey the magnitude of relative effect. For example, they
may describe an effect that represents a 120% increase in risk. This increase is
meant to describe a relative, not an absolute, effect, because we cannot have an
absolute effect of 120%. Describing an effect in terms of a percentage increase in
risk is the same as the relative effect defined previously. An increase of 120% cor-
responds to an RR of 2.2, which is 2.2 — 1.0 = 120% greater than 1. The 120%
is a description of the relative effect that subtracts the 1 from the RR. Usually, it
is straightforward to determine from the context whether a description of relative
effect is RR or RR ~ 1. If the effect is described as a fivefold increase in risk, for
example, it means that the RR is 5. If the effect is described as a 10% increase in
risk, it corresponds to an RR of LI, which is 1.1 — 1.0

Fffect measures that involve the IRD and the incidence rate ratio are defined
analogously to those involving the RD and the risk ratio. Table 4-5 compares
absolute and relative measures constructed from risks and from rates.

The range of the RD measure derives from the range of risk itself, which is
[0,1]. The lowest possible RD would result from an exposed group with zero risk
and an unexposed group at 100% risk, giving —1 for the difference. Analogously,
the greatest possible RD, 1, comes from an exposed group with 100% risk and
an unexposed group with zero risk. RD has no dimensionality (ie, it has no
units and is measured as a pure number) because the underlying measure, risk,
is also dimensionless, and the dimensionality of a difference is the same as the
dimensionality of the underlying measure.

Table 4-5 COMPARISON OF ABSOLUTE AND RELATIVE
ErFrECT MEASURES

Measure Numeric Range Dimensionality
Risk difference (-1, +1] None
Risk ratio 0, o] None
Incidence rate difference [~o0, +eo] 1/time
Incidence rate ratio {0, oa] Noene
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The risk ratio has a range that is never negative, because a risk cannot be nega-
tive. The smallest risk ratio occurs when the risk in the exposed group, the numer-
ator of the risk ratio, is zero. The largest risk ratio occurs when the risk among
the unexposed is zero, giving a ratio of o0, Any ratio measure will be dimension-
less if the numerator and denominator quantities have the same dimensionality,
because the dimensions divide out. In the case of risk ratio, the numerator, the
denominator, and the ratio are all dimensionless.

Incidence rates range from zere to infinity, and they have the dimensionality of
1/time. From these characteristics, it is straightforward to deduce the range and
the dimensionality of the TRD and the incidence rate ratio.

WHEN TO USE ABSOLUTE AND RELATIVE EFFECT MEASURES

Absolute and relative effect measures provide different messages. When
measuring the effect of an exposure on the health of a population, an
absolute effect measure is needed. It reflects added or diminished disease
burden in that population in terms of an increased risk or incidence rate
or, for protective exposures, a decreased risk or incidence rate. The public-
health implications of any exposure need to be assessed in terms of the
absolute effect measures.

Relative effect measures convey a different message. The attributable frac-
tion among exposed people, (RR —1)/RR, is purely a function of the rela-
tive effect measure, which gives a clue about the message of relative effect
measures. These measures indicate the extent to which the exposure in
question accounts for the occurrence of disease among the exposed people
who get disease. The relative measure itself expresses this relation on a scale
that goes from zero to infinity, and the attributable fraction converts it to a
proportion, but both convey a message about the extent to which disease
among the exposed population is a consequence of exposure.

It is important to realize that a relative effect may be extremely large but
with little public-health consequence. If an exposure has a rate ratio of 10
for an extremely rare disease, the 10-fold increase in disease implies that
the exposure accounts for almost all the disease among the exposed; how-
ever, even among exposed the disease may remain rare. Such an exposure
may have less public-health consequence than another exposure that merely
doubles the rate of a much more common disease.

In case-control studies (see Chapter §), usually only relative effects are
directly obtainable. Nevertheless, by taking into account the overall rate or
risk of disease occurrence in a population, the relative measures obtained
from case-control studies can be converted into absolute measures, which
are needed to assess appropriately the public-health impact of an exposure.

Examples

Table 4-6 presents data on the risk of diarrhea among breast-fed infants during
a 10-day period after their infection with Vibrio cholerae 01 according to the level
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Table 4-6 DiarrRHEA DUuminG a 10-Day ForLLow-uUp

PERIOD 1IN BREAST-FED INFANTS COLONIZED WITH

Vierto ¢HOLERA (] ACCORDING TO THE LEVEL OF

ANTIPOLYSACCHARIDE ANTIBODY TITER IN THEIR
MoTHER'S BREAST MILK

Antibody Level
Low High Total
Diarrhea 12 7 19
No diarrhea 2 9 11
Total 14 16 30
Risk 0.86 0.44 0.63

Reproduced with permission from Glass Rl et al”

-of antipolysaccharide antibody titers in their mother’s breast milk.” The data show
a substantial difference in the risk of developing diarrhea according to whether
‘the mother’s breast milk contains a low or a high level of antipolysaccharide anti-
body. The RD for infants exposed to milk with low compared with high levels of
antibody is 0.86 — 0.44 = 0.42. This RD reflects the additional risk of diarrhea
among infants whose mother’s breast milk has low antibody titers compared with
the risk among infants whose mother’s milk has high titers; it assumes that the
infants exposed to low titers would have experienced a risk equal to that of those
exposed to high titers were it not for the lower antibody levels.

We can also measure the effect of low titers on diarrhea risk in relative terms.
The risk ratio, RR, is 0.86/0.44 = 1.96. The relative effect is 1.96 — 1, or 0.96,
indicating a 96% greater risk of diarrhea among infants exposed to low antibody
titers in breast milk. Commonly, we would describe the risk among the infants
exposed to low titers as being 1.96 times the risk among infants exposed to high
titers.

The calculation of effects from incidence rate data is analogous to the calcu-
lation of effects from risk data. Table 4-7 gives data for the incidence rate of
breast cancer among women who were treated for tuberculosis early in the 20th
century.® Some women received a treatment that involved repeated fluoroscopy of
the lungs, with a resulting high dose of ionizing radiation to the chest.

Table 4-7 BREAST CANCER CASES AND PERSON-YEARS OF
OBSERVATION FOR WOMEN wITH TUBERCULOSIS WHO WERE
REPEATEDLY EXroOSED TO MULTIPLE X-RAY FLUOROSCOPIES AND
FOR UNEXPOSED WOMEN WITH TUBERCULOSIS

Radiation Exposure

Yes No Total
Breast cancer cases 41 15 56
Person-years 28,010 19,017 47,027
Rate (cases/10,000 person-years) 14.6 7.9 11.9

Reproduced with permission from Boice and Monson.?
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The incidence rate among those exposed to radiation is 14.6/10,000 yr',
compared with 7.9/10,000 yr! among those unexposed. The IRD is (14.6 —
7.9)/10,000 yr' = 6€.7/10,000 yr'.-This difference reflects the rate of breast can-
cer among exposed women that can be attributed to the radiation exposure and
assumes that the exposed women would have had a rate equal to that among the
unexposed women were it not for the exposure. We can also measure the effect
in relative terms. The incidence rate ratio is 14.6/7.9, or 1.86. The relative effect is
1.86 — 1, or (.86, which can be expressed as an 86% greater rate of breast cancer
among women exposed to the radiation. Alternatively, the incidence rate ratio can
be described as indicating a rate of breast cancer among exposed women that is
1.86 times that of the rate maoww unexposed women.

RounpinGg: How Many Dicirs SHouLD BE REPORTED?

A frequent question that arises in the reporting of results is how many digits
of accuracy should be reported. In some published papers, a risk ratio may
be reported as 4.1; in others, the same number may be reported as 4.0846.
The pumber of digits should reflect the amount of precision in the data.
The number 4.0846 implies that one is fairly sure that the data warrant a
reported value that lies between 4.084 and 4.085. Only a truly large study
can produce that level of precision. Nevertheless, it is surprisingly hard to
offer a general rule for the number of digits that should be reported. For
example, suppose that, for a given study, reporting should carry into the
first decimal (eg, 4.1). If the study reported risk ratios and took on values
lower than 1.0, the ratios would be rounded to values such as 0.7 or 0.8.
This amount of rounding error is greater, in proportion to the size of the
effect, than the rounding error in a reported value such as 4.1. Therefore, a
simple rule such as one decimal place (for example) will not suffice.

How about the rule that suggests using a constant number of meaning-
ful digits? With this rule, 4.1 would have the same reporting accuracy as
0.83. This rule may appear to be an improvement, but it breaks down near
the value of 1.0 for ratio measures; it suggests that we should distinguish
0.98 from 0.99 but not 1.00 from 1.01: Both of the latter numbers would
be rounded to 1.0, and the next reportable value would be 1.1. Because
1.0 is the zero point for ratio measures of effect, this rule treats positive
effects near zero differently from negative effects. If all the risk ratios to be
reported ranged from 0.9 to 1.1, this rule would make little sense.

No rule is needed as long as the writer uses good judgment and thinks about
the number of digits to report. Values used in intermediate calculations should
never be rounded; one should round only in the final step before reporting.
Consider that rounding 1.41 to 1.4 is not a large error, but rounding 1.25 to
1.2 or to 1.3 is a rounding error that amounts to 20% of the effect for a rate
ratio (keeping in mind that 1.0 equals no effect). Finally, when rounding a
number ending in §, it is customary to round upward, but it is preferable to
use an unbiased strategy, such as rounding to the nearest even number. Under
such a strategy, both 1.75 and 1.85 would be rounded to 1.8.

e o e S P T
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The Relation Between Risk Ratios and Rate Ratics

Risk data produce estimates of effect that are either risk differences or risk ratios,
and rate data produce estimates of effect that are rate differences or rate ratios.
Risks cannot be compared directly with rates {they have different units), and for
the same reason, risk differences cannot be compared with rate differences. Under
certain conditions, however, a risk ratio can be equivalent to a rate ratio. Suppose
that we have incidence rates that are constant over time, with the rate among
exposed people equal to I, and the rate among unexposed people equal to I.
From Equation 4-1, we know that a constant incidence rate will result in a risk
that is approximately equal to the product of the rate and the time period, pro-
vided that the time period is short enough so that the risk remains less than about
0.20. For greater values, the approximation does not work well. Assuming that we
are dealing with short time periods, the ratio of the risk among the exposed to
the risk among the unexposed, R /R, will be as follows:

W Hxn.bpmw
Risk ratio = —+ = 2~ = L
R, 1I,xtime I,

This relation shows that the risk ratio is nearly the same as the rate ratio, pro-
vided that the time period over which the risks apply is sufficiently short or the
rates are sufficiently low for Equation 4-1 to apply. The shorter the time period
or the lower the rates, the better the approximation represented by Equation 4-1
and the closer the value of the risk ratio to the rate ratio.

Over longer time periods (the length depending on the value of the rates
involved), risks may become sufficiently great that the risk ratio will begin to
diverge from the rate ratio. Because risks cannot exceed 1.0, the maximum value
of a risk ratio cannot be greater than 1 divided by the risk among the unex-
posed. Consider the data in Table 4-6, for example. The risk in the high-titer
antibody group (considered to be the unexposed group) is 0.44. With this risk for
the unexposed group, the risk ratio cannot exceed 1/0.44, or 2.3. The observed
- risk ratio of 1.96 is not far below the maximum possible risk ratio. Incidence rate
ratjos are not constrained by this type of ceiling, and when risk among the unex-
;posed is high, we can expect there to be a divergence between the incidence rate

-/ ratio and the risk ratio. Suppose the incidence rates that gave rise to the risks in

Table 4-6 were constant over the 10-day follow-up period. If we take into account
the exponential-decay relation between risk and rate, we can back-calculate from
the risks in Table 4-6 to the underlying rates based on the exponential decay
curve, and from that result, we can calculate that the ratio of those underlying
rates is 3.4, compared with the 1.96 for the ratio of risks. This large discrepancy
-arises because the risks are large.

If the time period over which a risk is calculated approaches 0, the risk itself
also approaches 0; the risk of a given person having a myocardial infarction may
be 10% over a decade, but over the next 10 seconds, it will be extremely small,
and its value will shrink along with the length of the time interval. Nevertheless,
the ratio of two quantities that both approach 0 does not necessarily approach 0.
In the case of the risk ratio calculated for risks that apply to shorter and shorter
time intervals, as these risks approach 0, the risk ratio approaches the value of
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the incidence rate ratio. The incidence rate ratio is the limiting value for the
risk ratio as the time interval over which the risks are taken approaches 0. We
therefore can describe the incidence rate ratio as an insfantaneous risk ratio. This
equivalence of the two types of ratios for short time intervals has resulted in
some confusion of terminology: Often, the phrase relative risk is used to refer to
either an incidence rate ratio or a risk ratio. Either of the latter terms is prefer-
able to the term relative risk, because they describe the nature of the data from
which the ratio derives. Nevertheless, because the risk ratio and the rate ratio are
equivalent for small risks, the more general term relative risk has some justifica-
tion. The often-used notation RR is sometimes read to mean relative risk, which
equally can be read as risk ratio or rate ratio, all of which are equivalent if the
risks are sufficiently small.

WHEN Risx Dors NoT MeanN Risk

In referring to effects, some people inaccurately use the word risk in place
of the word effect. For example, suppose that a study reports two risk ratios
for lung cancer from asbestos exposure, 5.0 for young adults and 2.5 for
older adults. These effect values may be described as follows: “The risk of
lung cancer from asbestos exposure is not as great among older people as
among younger people” This statement is incorrect. In fact, the RD between
those exposed and those unexposed to asbestos is sure to be greater among

" older adults than younger adults, and the risk attributable to the effect of
asbestos is greater in older adults. The risk ratio is smaller among older
adults because the risk of lung cancer increases steeply with age, and the
ratio for older adults is based on a larger denominator. The statement is
wrong because the term risk has been used in place of the term risk ratio
or the more general term effect. It is correct to describe the data as follows:
“The risk ratio of lung cancer from asbestos exposure is not as great among
older people as among younger people”

Attributable Fraction

If we take the RD between exposed and unexposed people, R, — R, and divide it
by the risk in the unexposed group, we obtain the relative measure of effect (see
Equation 4-5). We can also divide the RD by the risk in exposed people to get
an expression that we refer to as the attributable fraction:

Euwiw HENIH
Attributable fraction = —— == &% =] =T [4-6]
R, R RR  RR

If the RD reflects a causal effect that is not distorted by any bias, the attribut-
able fraction is a measure that quantifies the proportion of the disease burden
among exposed people that is caused by the exposure. Consider the hypotheti-
cal data in Table 4-8. The risk of disease during a l-year period is 0.05 among
the exposed and 0.01 among the unexposed. Suppose that this difference can
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Table 4-8 HyroTHETICAL DaTa GIVING 1-YEAR
Disease Risks For EXPOSED AND UNEXPOSED

ProrLE
Exposure
No Yes Total
Disease 900 500 1,400
No disease 89,100 9,500 98,600
Total 90,000 10,000 100,000
Risk 0.01 0.05 0.014

be reasonably attributed to the effect of the exposure {because we believe that
we have accounted for all substantial biases). The RD is 0.04, which is 80% of
the risk among the exposed. We would then say that the exposure appears to
account for 80% of the disease that occurs among exposed people during the
1-year period. Another way to calculate the aitributable fraction is from the risk
ratio: {§ ~ 1)/5 = 80%. (Terminology note: The atfributable fraction sometimes is
referred to in older texts as the atfributable risk percent or aftributable risk.)

To calculate the attributable fraction for the entire population of 100,000
people in Table 4-8, we first calculate the attributable fraction for exposed peaple.
To get the overall attributable fraction for the total population, the fraction among
the exposed is multiplied by the proportion of all cases in the total population
who are exposed. There are 1400 cases in the entire population, of whom 500
are exposed. The proportion of exposed cases is 500/1400 = 0.357. The overall
attributable fraction for the population is the product of the attributable fraction
among the exposed and the proportion of cases who are exposed: 0.8 x 0.357 =
0.286; that is, 28.6% of all cases in the population are attributable to the expo-
sure, This calculation is based on a straightforward idea: No case can be caused
by exposure unless the person is exposed. Among all cases, only some of the
exposed cases can be attributable to the exposure. There are 500 exposed cases, of
whom we calculated that 400 represent excess cases caused by the exposure. None
of the 900 cases among the unexposed is attributable to the exposure. Therefore,
among the total of 1400 cases in the population, only 400 of the exposed cases
are attributable to the exposure—the proportion 400/1400 = (.286, which is the
same value that we calculated.

If the exposure is categorized into more than two levels, we can use the follow-
ing equation, which takes into account each of the exposure levels:

Total attributable fraction = 3,(AF, X P} [4-7]

AF. is the attributable fraction for exposure level 7, P, represents the proportion of
all cases that falls in exposure category i, and ¥ indicates the sum of each of the
exposure-specific attributable fractions. For the unexposed group, the attributable
fraction is 0.

Equation 4-7 can be applied to the hypothetical data in Table 4-9, which
describe risks for a population with three levels of exposure. The attributable frac-
tion for the group with no exposure is 0. For the low-exposure group, the attrib-
utable fraction is 0.50, because the risk ratio is 2. For the high-exposure group,
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Table 4-9 HyrpoTHETICAL Datra GIVING 1-YEAR DISEASE RISKS POR
ProPLE AT THREE LEVELS OF EXPOSURE

Exposure

None Low High Total
Disease 100 1,200 1,200 2,500
No disease 9,200 58,800 28,800 97,500
Total 10,000 60,000 30,000 100,000
Risk 0.01 0.02 0.04 0.025
Risk ratio 1.00 2.00 4.00
Proportion of all cases 0.04 0.48 0.48

the attributable fraction is 0.75, because the risk ratio is 4. The total attributable
fraction is

0 + 0.50(0.48) + 0.75(0.48) = 0.24 + 0.36 = 0.60

The same result can be calculated directly from the number of atiributable cases
at each of the exposure levels:

(0 + 600 + 900)/2500 = 0.60

Under certain assumptions, estimation of attributable fractions can be based on
rates as well as risks. In Equation 4-6, which uses the risk ratio to calculate the
attributable fraction, the rate ratio can be used instead, provided that the condi-
tions are met for the rate ratio to approximate the risk ratio. If exposure results
in an increase in disease occurrence at some levels of exposure and a decrease at
other levels of exposure, compared with no exposure, the net attributable fraction
will be a combination of the prevented cases and the caused cases at the different
levels of exposure. The net effect of exposure in such situations can be difficult
to assess and may obscure the components of the exposure effect. This topic is
discussed in greater detail by Rothman, Greenland and Lash.’

QUESTIONS

1. Suppose that in a population of 100 people, 30 die. The risk of death can
be calculated as 30/100. What is missing from this measure?

2. Can we calculate a rate for the data in question 17 If so, what is it? If
not, why not?

3. Eventually, all people die. Why should we not state that the mortality rate
for any population is always 100%?

4, Tf incidence rates remain constant with time and if exposure causes disease,
which will be greater, the risk ratio or the rate ratio?
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S. Why is it incorrect to describe a rate ratio of 10 as indicating a high risk
of disease among the exposed?

6. A newspaper article states that a disease has increased by 1200% in the past
decade. What is the rate ratio that corresponds to this level of increase?

7. Another disease has increased by 20%. What is the rate ratio that
corresponds to this increase?

8. From the data in Table 4-6, calculate the fraction of diarrhea cases among
infants exposed to a low antibody level that is attributable to the low anti-
body level. Calculate the fraction of all diarrhea cases attributable to expo-
sure to low antibody levels. What assumptions are needed to interpret the
result as an attributable fraction?

9. What proportion of the 56 breast cancer cases in Table 4-7 is attributable
to radiation exposure? What are the assumptions?

10. Suppose you worked for a health agency and had collected data on the
incidence of lower back pain among people in different occupations. What
measures of effect would you choose to look at, and why?

11. Suppose that the rate ratio measuring the relation between an exposure
and a disease is 3 in two different countries. Would this situation imply that
exposed people have the same risk in the two countries? Would it imply
that the effect of the exposure is the same magnitude in the two countries?
Why or why not?
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Types of Epidemiologic Studies

Chapter 4 described measures of disease frequency, including risk, incidence rate,
and prevalence; measures of effect, including risk and incidence rate differences
and ratios; and attributable fractions. Epidemiologic studies may be viewed as
measurement exercises undertaken to obtain estimates of these epidemiologic
measures. The simplest studies aim only at estimating a single risk, incidence
rate, or prevalence. More complicated studies aim at comparing measures of
disease occurrence, with the goal of predicting such occurrence, learning about
the causes of disease, or evaluating the impact of disease on a population. This
chapter describes the two main types of epidemiologic study, the cohort study
and the case-control study, along with several variants. More specialized study
designs, such as two-stage designs and ecologic studies, are discussed in Modern
Epidemiology.!

COHORT STUDIES

In epidemiology, a cohort is defined most broadly as “any designated group of
individuals who are followed or traced over a period of time> A cohort study,
which is the archetype for all epidemiologic studies, involves measuring the
occurrence of disease within one or more cohorts. Typically, a cohort comprises
persons with a common characteristic, such as an exposure or ethnic identity. For
simplicity, we refer to two cohorts, exposed and unexposed, in our discussion. In
this context, we use the term exposed in its most general sense; for example, an
exposed cohort may have in commeon the presence of a specific gene. The pur-
pose of following a cohort is to measure the occurrence of one or more specific
diseases during the period of follow-up, usually with the aim of comparing the
disease rates for two or more cohorts.

The concept of following a cohort to measure disease occurrence may appear
straightforward, but there are many complications involving who is eligible to be
followed, what should count as an instance of disease, how the incidence rates or
risks are measured, and how exposure ought to be defined. Before exploring these




